Vol. 9
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-08-19
Design and Optimization of Compact Balanced Antipodal Vivaldi Antenna
By
Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009
Abstract
In this paper, the conformal finite-difference time-domain (CFDTD) method using PSO optimization is applied to design a compact directive balanced antipodal Vivaldi antenna for ultra-wideband (UWB) applications. This paper demonstrates miniaturized antipodal Vivaldi antenna (32 × 35 × 1.6 mm3), having low-cross polarization levels and reasonable gain from 3.1 to 10.6 GHz. The antenna peak gain is 5.25 dBi in the specified band. The simulated and experimental results of return loss, far field patterns and gain are presented.
Citation
Farid Jolani, Gholamreza R. Dadashzadeh, Mohammad Naser-Moghadasi, and Abdolmehdi Dadgarpour, "Design and Optimization of Compact Balanced Antipodal Vivaldi Antenna," Progress In Electromagnetics Research C, Vol. 9, 183-192, 2009.
doi:10.2528/PIERC09071510
References

1. Mehdipour, A., K. M. Aghdam, and R. Faraji-Dana, "Complete dispersion analysis of Vivaldi antenna for ultra wideband applications," Progress In Electromagnetics Research, Vol. 77, 85-96, 2007.
doi:10.2528/PIER07072904

2. Lin, S., S. Yang, and A. E. Fathy, "Development of a novel UWB vivaldi antenna array using SIW Technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

3. Greenberg, M. C., K. L. Virga, and C. L. Hammond, "Performance characteristic of the dual exponentially tapered slot antenna (DETSA) for wireless communications applications," IEEE Trans. Veh. Technol., Vol. 42, No. 2, 30-312, Mar. 2003.

4. Nikolaou, S., L. Marcaccioli, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "Conformal double exponentially tapered slot antennas (DETSA) for UWB communication systems' front ends," IEEE-ICU Int. Conf. Ultrawideband Technol., Sep. 2005.

5. Abbosh, A. M., H. K. Kan, and M. E. Bialkowski, "Design of compact directive ultra wideband antipodal antenna," Microwave and Opt. Tech. Lett., Vol. 84, No. 12, Dec. 2006.

6. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagat. Lett., Vol. 7, 656-660, 2008.
doi:10.1109/LAWP.2008.921352

7. Yu, W. and R. Mittra, "Accurate modeling of planar microwave circuit using conformal FDTD algorithm," Electronics Lett., Vol. 36, 618-619, Mar. 2000.
doi:10.1049/el:20000495

8. Hu, W. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

9. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna design," IEEE Trans. Antenna and Propagat., Vol. 53, No. 11, 3459-3468, Nov. 2005.
doi:10.1109/TAP.2005.858842

10. Semnani, A. and M. K. Hesari, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

11. Wang, W. T., S. X. Gong, Y. J. Zhang, F. T. Zha, and J. Ling, "Low RCS dipole array synthesis based on MOM-PSO hybrid algorithm," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.

12. Edwards, T. C. and M. B. Steer, Foundation of Interconnected and Microstrip Design, 3rd Ed., John Wiley & Sons, 2000.

13. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CSF-PML for arbitrary media," Microwave Opt. Tech. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A

14. Zhang, Y. P., "Finite-difference time-domain analysis of integrated ceramic ball grid array package antenna for highly integrated wireless transceivers," IEEE Trans. Antenna and Propagat., Vol. 52, No. 2, 43-442, Feb. 2004.

15. Xu, S. and Y. Rahmat-Samii, "Boundary condition in particle swarm optimization revisited," IEEE Trans. Antenna and Propagat., Vol. 55, No. 3, 760-765, Mar. 2007.
doi:10.1109/TAP.2007.891562