Vol. 11

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-09-28

A Novel Slot for Enhancing the Impedance Bandwidth and Gain of Rectangular Microstrip Antenna

By N. Mahagavin Sameena, Rajendra Konda, and Shivasharanappa Mulgi
Progress In Electromagnetics Research C, Vol. 11, 11-19, 2009
doi:10.2528/PIERC09082904

Abstract

This paper reports the design and development of rectangular microstrip antenna comprising a novel slot for enhancing the impedance bandwidth and gain. By incorporating a slot of optimum geometry at suitable location on the radiating patch, the antenna provides 78.08% (3.39 - 7.73 GHz) of impedance bandwidth and 3dB of gain without changing the nature of broadside radiation characteristics when compared to conventional rectangular microstrip antenna. The proposed antenna may find applications in mobile WiMax, IEEE802.11a, HIPERLAN/2, cordless phones, fixed wireless etc. Design concept of antennas is given, and experimental results are discussed.

Citation


N. Mahagavin Sameena, Rajendra Konda, and Shivasharanappa Mulgi, "A Novel Slot for Enhancing the Impedance Bandwidth and Gain of Rectangular Microstrip Antenna," Progress In Electromagnetics Research C, Vol. 11, 11-19, 2009.
doi:10.2528/PIERC09082904
http://www.jpier.org/PIERC/pier.php?paper=09082904

References


    1. Zehforoosh, Y., C. Ghobadi, and J. Nourinia, "Antenna design for ultra wideband application using a new multilayer structure," PIERS Online, Vol. 2, No. 6, 544-549, 2006.
    doi:10.2529/PIERS060531145356

    2. Kumar, G. and K. C. Gupta, "Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges," IEEE Trans. Antennas and Propagation, Vol. 32, 1375-1379, 1984.
    doi:10.1109/TAP.1984.1143264

    3. Jazi, M. N., Z. H. Firouzeh, H. M. Sadeghi, and G. Askari, "Design and implementation of aperture coupled microstrip IFF antenna," PIERS Online, Vol. 4, No. 1, 1-5, 2008.

    4. Nishiyama, E. and M. Aikawa, "Wide-band and high gain microstrip antenna with thick parasitic patch substrate," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 273-276, 2004.

    5. Levine, E., G. Malamud, S. Shtrikman, and D. Treves, "A study of microstrip array antennas with the feed network," IEEE Trans. Antennas and Propagation, Vol. 37, 426-434, 1989.
    doi:10.1109/8.24162

    6. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, New Delhi, 1980.

    7. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

    8. Maci, S. and G. B. Gentili, "Dual-frequency patch antennas," IEEE Trans. Antennas and Propagation, Vol. 39, 13-19, 1997.

    9. Pushpanjali, G. M., R. B. Konda, S. N. Mulgi, S. K. Satnoor, and P. V. Hunagund, "Equilateral triangular microstrip array antenna for broadband operation," Microwave and Optical Technology Letters, Vol. 50, No. 7, 1834-1837, 2008.
    doi:10.1002/mop.23503

    10. Rafi, G. Z. and L. Shafai, "Wideband V-slotted diamond-shaped microstrip patch antenna," Electronics Letters, Vol. 40, No. 19, 1166-1167, 2004.
    doi:10.1049/el:20046186

    11. Sadat, S., M. Houshmand, and M. Roshandel, "Design of a microstrip square-ring slot antenna filled by an H-shape slot for UWB applications," Progress In Electromagnetic Research, Vol. 70, 191-198, 2007.
    doi:10.2528/PIER07012002

    12. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley and Sons, New York, 1982.

    13. Nishiyama, E., M. Aikawa, and S. Egashira, "FDTD analysis of stacked microstrip antenna with high gain," Progress In Electromagnetic Research, Vol. 33, 29-43, 2001.
    doi:10.2528/PIER00091501