Vol. 11
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-10-07
Digital Amplitude Control for Interference Suppression Using Immunity Genetic Algorithm
By
Progress In Electromagnetics Research C, Vol. 11, 21-38, 2009
Abstract
In this paper, we propose a novel genetic algorithm (GA) called immunity GA (IGA) for array pattern synthesis with interference suppression using digital amplitude only control. The IGA is based on crossover evolution where the crossover operator is a variant of the known GA operator. A new formulation of the array factor transform for a specific number of elements N is expressed by a discrete cosine transform (DCT) with pre-computed DCT matrix. Evaluating thousands of candidate solutions generated by the IGA using the precomputed DCT matrix will result in a high speed computation. This high performance allows us to find a good approximation of the absolute minimum SLL of synthesized arrays with digital amplitude control. Simulation results show the effectiveness of this new algorithm for pattern synthesis with low SLL and null steering.
Citation
Zoubir Hamici Taisir Ismail , "Digital Amplitude Control for Interference Suppression Using Immunity Genetic Algorithm," Progress In Electromagnetics Research C, Vol. 11, 21-38, 2009.
doi:10.2528/PIERC09082905
http://www.jpier.org/PIERC/pier.php?paper=09082905
References

1. Bevelacqua, P. J. and C. A. Balanis, "Minimum sidelobe levels for linear arrays," IEEE Trans. Antennas Propagt., Vol. 55, 3442-3449, Dec. 2007.
doi:10.1109/TAP.2007.910490

2. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propagt., Vol. 53, No. 8, 2674-2679, Aug. 2005.
doi:10.1109/TAP.2005.851762

3. Donelli, M., R. Azaro, F. De Natale, and A. Massa, "An innovative computational approach based on a particle swarm strategy for adaptive phased-arrays control," IEEE Trans. Antennas Propagt., Vol. 54, No. 3, Mar. 2006.

4. Guney, K. and S. Basbug, "Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm," Progress In Electromagnetics Research, Vol. 79, 475-497, 2008.
doi:10.2528/PIER07110705

5. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propagt., Vol. 42, 993-999, Jul. 1994.

6. Mahanti, G. K., N. Pathak, P. Mahanti, and , "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real-coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

7. Buckley, M. J., "Linear array synthesis using a hybrid genetic algorithm," Proc. IEEE Ant. Propagat. Soc. Int. Symp., 584-587, Baltimore, MD, Jul. 1996.

8. Ruf, C. S., "Numerical annealing low-redundancy linear arrays," IEEE Trans. Antennas Propagt., Vol. 41, 85-90, Jan. 1993.
doi:10.1109/8.210119

9. Murino, V., A. Trucco, and C. Regazzoni, "Synthesis of unequally spaced arrays by simulated annealing," IEEE Trans. on Signal Processing, Vol. 44, No. 1, 119-123, 1996.
doi:10.1109/78.482017

10. Mulholland, J. E., F. N. DiMeo, A. Hoorfar, and K. Goverdhanam, "The optimization of thinned phased arrays by the use of neural networks," 10th Annual Benjamin Franklin Symposium, Philadelphia, PA, May 2, 1992.

11. Rattan, M., M. S. Patterh, and B. S. Sohi, "Antenna array optimization using evolutionary approaches," Apeiron, Vol. 15, No. 1, 78, Jan. 2008.

12. Razavi, A. and K. Forooraghi, "Thinned arrays using pattern search algorithms," Progress In Electromagnetics Research, Vol. 78, 61-71, 2008.
doi:10.2528/PIER07081501

13. Rocha-Alicanoa, C., D. Covarrubias-Rosalesa, C. Brizuela-Rodrigueza, and M. Panduro-Mendozab, "Differential evolution algorithm applied to sidelobe level reduction on a planar array," Int. J. Electron. Commun. (AEU), Vol. 61, 286-290, 2007.
doi:10.1016/j.aeue.2006.05.008