Vol. 11
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-12-08
A Novel Active Antenna Beamforming Networks Using Butler Matrices
By
Progress In Electromagnetics Research C, Vol. 11, 183-198, 2009
Abstract
In this paper, a novel architecture of using cascaded Butler Matrices (BM) integrated with Low Noise Amplifiers (LNAs) is proposed. By using the narrow beams available from the Butler Matrix, it is possible for a receiver to increase the gain in the desired signal directions and reduce the gain in interference directions. Hence, high-gain narrowbeam signals for long-range application are produced. A novel technique is introduced which uses high linearity LNAs and a second Butler Matrix, acting as a mirror of the first Butler Matrix, reconstructing the antenna patterns of the individual radiating elements. The resulting outputs have high linearity and broad beam width that can be used for short-range communication. Design of the Butler Matrix, Low Noise Amplifier, Wilkinson Power Divider and High Linearity Low Noise Amplifier are presented in this paper. A final design of active antenna beamforming network using cascaded Butler Matrices integrated with LNAs is proposed. The beamforming network provides a method, which could be applicable in vehicle communication systems, where long-range communications with roadside beacons and short-range communications with the fast moving vehicle are both required.
Citation
Sharul Kamal Bin Abd Rahim Peter Gardner , "A Novel Active Antenna Beamforming Networks Using Butler Matrices," Progress In Electromagnetics Research C, Vol. 11, 183-198, 2009.
doi:10.2528/PIERC09110106
http://www.jpier.org/PIERC/pier.php?paper=09110106
References

1. Wang, F. Y., C. Herget, and D. Zeng, "Guest editorial developing and improving transportation systems: The structure and operation of IEEE intelligent transportation systems society," IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 3, 261-264, Sep. 2005.
doi:10.1109/TITS.2005.856949

2. Andrisano, O., R. Verdone, and M. Nakagawa, "Intelligent transportation systems: The role of third generation mobile radio networks," IEEE Communications Magazine, Vol. 38, No. 9, 2000.
doi:10.1109/35.868154

3. Jing, Z. and S. Roy, "MAC for dedicated short range communications in intelligent transport system," IEEE Communications Magazine, Vol. 41, No. 12, 60-67, 2003.
doi:10.1109/MCOM.2003.1252800

4. Inoue, H., S. Osawa, A. Yashiki, and H. Makino, "Dedicated short-range communications (DSRC) for AHS services," Proc. IEEE Intelligent Vehicle Symposium, 369-374, June 2004.
doi:10.1109/IVS.2004.1336411

5. Barth, M., X. Lei, C. Yi, and M. Todd, "A hybrid communication architecture for intelligent shared vehicle systems," IEEE ntelligent Vehicle Symposium, Vol. 2, 557-563, 2002.

6. Alessandri, F., M. Dionigi, R. Sorrentino, and L. Tarricone, "Rigorous and efficient fabrication-oriented CAD and optimization of complex waveguide networks," IEEE Trans. Microwave Theory and Tech., Vol. 45, 2366-2374, 1997.
doi:10.1109/22.643845

7. Denidni, T. A. and T. E. Libar, "Wide band four port Butler matrix for switched multibeam antenna arrays," Personal Indoor and Mobile Radio Communications, 14th IEEE Proceedings, Vol. 3, 2461-2464, 2003.
doi:10.1109/PIMRC.2003.1259161

8. Nedil, M., T. A. Denidni, A. Djaiz, and A. M. Habib, "A new ultra wideband beamforming for wireless communications in underground mines," Progress In Electromagnetic Research M, Vol. 4, 1-21, 2008.
doi:10.2528/PIERM08070207

9. Nedil, M., T. A. Denidni, and L. Talbi, "Novel Butler Matrix using CPW multilayer technology," IEEE Trans. Microwave Theory and Tech., Vol. 54, 499-507, 2006.
doi:10.1109/TMTT.2005.860490

10. He, J., B. Z. Wang, Q. Q. He, Y. X. Xing, and Z. L. Yin, "Wideband X band microstrip Butler Matrix," Progress In Electromagnetic Research, PIER 74, 131-140, 2007.

11. Liberti, J. C. and T. S. Rappaport, Smart Antenna for Wireless Communications: IS-95 and Third Generation CDMA Applications, Prentice Hall, Upper Saddle River, NJ, 1999.

12. Zak, T. and K. Sache, "An integrated Butler Matrix in multilayer technology for multi-port amplifier applications," 14th International Conference on Microwaves, Radar and Wireless Communications, Vol. 1, May 2002.

13. Piovano, P., L. Accatino, A. Angelucci, T. Jones, P. Capece, and M. Votta, "Design and breadboarding of wideband N × N Butler matrices for multiport amplifiers," Microwave Conference/Brazil, SBMO International, Vol. 1, 175-180, 1993.
doi:10.1109/SBMO.1993.589533

14. Angelucci, A., P. Audagnotto, P. Corda, and B. Piovano, "Multiport power amplifiers for mobile-radio systems using microstrip Butler matrices," Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, Vol. 1, 628-631, Jun. 1994.

15. Sudrez-Fajardo, C., M. Ferrando-Batallur, A. Valero, and V. Rodrigo, "Multiple beam system with circular arrays," Antennas and Propagation Society International Symposium, 2005 IEEE, Vol. 4B, 35-38, Jul. 3-8, 2005.

16. Suarez, C., M. Ferrando-Bataller, and A. Valero-Nogueira, "Pattern synthesis of uniform circular arrays with directive elements," Antennas and Propagation Society International Symposium, 2004. IEEE, Vol. 3, 2812-2815, Jun. 20-25, 2004.

17. Nibler, F., High Frequency Circuit Engineering, The Institute of Electrical Engineering, 1996.

18. Hall, P. S. and S. J. Vetterlein, "Review of radio frequency beam-forming techniques for scanned and multiple beam antennas," IEE Proceeding, Vol. 137, No. 5, 293-303, 1990.

19. Ruze, J., "Wide-angle metal plate optics," Proc. of the IRE, Vol. 38, No. 1, 53-59, 1950.
doi:10.1109/JRPROC.1950.232789

20. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Trans. on Antennas and Applications, Vol. 11, No. 6, 623-632, 1963.
doi:10.1109/TAP.1963.1138114

21. Moody, H. J., "The systematic design of the Butler Matrix," IEEE Transactions on Antennas and Propagation, Vol. 12, No. 6, 786-788, 1964.
doi:10.1109/TAP.1964.1138319

22. Blass, J., "Multidirectional antenna --- A new approach to stacked beams,", IRE Inter. Convention Record, Vol. 8, 1960.

23. Data Sheet Agilent ATF-55143 Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package.

24. Data Sheet, Avago Technologies MGA-61563 Current Adjusted, Low Noise Amplifier.