Vol. 18
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-18
Compact Thick Metal Diplexer with Multi-Coupled Folded Half Wavelength Resonators
By
Progress In Electromagnetics Research C, Vol. 18, 1-8, 2011
Abstract
A thick metal microstrip diplexer is presented. The circuit is based on compact folded half wavelength resonators and uses a source/load-multi-resonator coupling method providing improved performance and greater design flexibility. Source/load coupling with multiple resonators introduces additional transmission zeros, and this coupling is enhanced by using high-aspect-ratio metal structures. Tall, narrow metal arms connected to the ports and extended to the non-adjacent resonators provide effective multi-resonator bypass coupling. The high-aspect-ratio diplexer fabricated using polymer-based deep X-ray lithography and 0.22 mm thick metal electroplating demonstrates the advantages of thick metal structures for coupled resonator applications.
Citation
Himal C. Jayatilaka, David M. Klymyshyn, Martin Börner, and Juergen Mohr, "Compact Thick Metal Diplexer with Multi-Coupled Folded Half Wavelength Resonators," Progress In Electromagnetics Research C, Vol. 18, 1-8, 2011.
doi:10.2528/PIERC10100410
References

1. Reid, J. R., D. Hanna, and R. T. Webster, "A 40/50GHZ diplexer realized with three dimensional copper micromachining," IEEE MTT-S Digest, 1271-1274, June 2008.

2. Hill, M. J., J. Papapolymerou, and R. W. Ziolkowski, "High-Q micromachined resonant cavities in a K-band diplexer configuration," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 5, 307-312, October 2001.
doi:10.1049/ip-map:20010644

3. Klymyshyn, D. M., H. C. Jayatilaka, M. Börner, and J. Mohr, "High-aspect-ratio coplanar waveguide wideband bandpass filter with compact unit cells," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 11, 2753-2760, November 2009.
doi:10.1109/TMTT.2009.2032347

4. Yoon, J. B., B. I. Kim, Y. S. Choi, and E. Yoon, "3-D construction of monolithic passive components for RF and microwave ICs using thick-metal surface micromachining technology," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 1, 279-288, January 2003.
doi:10.1109/TMTT.2002.806511

5. Matthaei, G., L. Young, and E. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, McGraw-Hill, New York, 1964.

6. Cameron, R. J. and J. D. Rhodes, "Asymmetric realization of dual-mode bandpass filters," IEEE Trans. Microwave Theory Tech., Vol. 29, 51-58, January 1981.
doi:10.1109/TMTT.1981.1130286

7. Amari, S., U. Rosenberg, and J. Bornemann, "Adaptive synthesis and design of resonator filters with source-load-multiresonator coupling," IEEE Trans. Microwave Theory Tech., Vol. 50, 1969-1977, August 2000.

8. Jayatilaka, H. C. and D. M. Klymyshyn, "Half wavelength open loop bandpass filters with transmission zeros," Proc. APMC Conf., 2213-2217, 2007.

9. Ansoft High Frequency Structure Simulator (HFSSTM), Version 10.1.3, Ansoft Corporation, Pittsburgh, PA, USA.

10. Kissling, S., K. Bade, M. Börner, and D. M. Klymyshyn, "Electropolishing as a method for deburring high aspect ratio nickel microstructures," Microsystem Technologies, Vol. 16, No. 8-9, 1361-1367, August 2010.
doi:10.1007/s00542-010-1075-z