Vol. 18

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-12-07

Wideband Traveling Wave Koch Dipole Antenna

By Sukh Das Ahirwar, Y. Purushottam, Khumanthem Takeshore, and Chandana Sairam
Progress In Electromagnetics Research C, Vol. 18, 103-110, 2011
doi:10.2528/PIERC10102701

Abstract

In this paper, a traveling wave Koch dipole antenna is proposed. The antenna is an amalgamation of traveling wave antennas that require large elctrical lengths and fractal curves that are known for excellent form factor characteristics. The antenna is analyzed using a Mom code. The antenna exhibits an impedance bandwidth that is more than 10:1 for VSWR < 3:1. A comparision of simulated and measured results are presented. The traveling wave fractal antenna has many potential applications in communications and electronics warfare.

Citation


Sukh Das Ahirwar, Y. Purushottam, Khumanthem Takeshore, and Chandana Sairam, "Wideband Traveling Wave Koch Dipole Antenna," Progress In Electromagnetics Research C, Vol. 18, 103-110, 2011.
doi:10.2528/PIERC10102701
http://www.jpier.org/PIERC/pier.php?paper=10102701

References


    1. Maclean, J. S., "A re-examination of the fundamental limitations on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 673-676, May 1996.

    2. Puente, C., R. Pous, J. Romeu, X. Gracia, and F. Benitez, "Fractal multiband antenna based on the sierpinski gasket," IEE Electronics Letters, Vol. 32, No. 1, 1-2, Jan. 1996.
    doi:10.1049/el:19960033

    3. Romeu, J. and J. Soler, "Generalized Sierpinski fractal multiband antenna," IEEE Transactions on Antennas and Propagation, Vol. 49, 1237-1239, Aug. 2001.
    doi:10.1109/8.943320

    4. Tang, P. W. and P. F. Wahid, "Hexagonal fractal multiband antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 111-112, Dec. 2004.
    doi:10.1109/LAWP.2004.829989

    5. Song, C. T. P., P. S. Hall, and H. Ghafouri-Shiraz, "Multiband multiple ring monoole antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 722-729, Apr. 2003.
    doi:10.1109/TAP.2003.811097

    6. Werner, D. H., R. L. Haupt, and P. L. Werner, "Fractal antenna engineering: The theory and design of fractal antenna arrays," IEEE Antennas and Propagation Magazine, Vol. 41, No. 5, 37-58, Oct. 1999.
    doi:10.1109/74.801513

    7. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, Edited by Professor Kai Chang, Wiley, 2005.

    8. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, Feb. 2002.
    doi:10.1109/74.997888

    9. Anguera, J., E. Martínez, C. Puente, C. Borja, and J. Soler, "Broadband dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 66-73, Jan. 2004.
    doi:10.1109/TAP.2003.822433

    10. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the Sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, Nov. 2001.
    doi:10.1002/mop.1407

    11. Anguera, J., C. Puente, E. Martínez, and E. Rozan, "The fractal Hilbert monopole: A two-dimensional wire," Microwave and Optical Technology Letters, Vol. 36, No. 2, 102-104, Jan. 2003.
    doi:10.1002/mop.10687

    12. Yeo, U. B., J. N. Lee, J. K. Park, H. S. Lee, and H. S. Kim, "An ultra-wideband antenna design using sierpinski sieve fractal," Journal of Electromagnetics Waves and Applications, Vol. 22, No. 12, 1713-1723, 2008.
    doi:10.1163/156939308786390148

    13. Aggarwal, A. and M. V. Kartikeyan, "Pythagoras tree: A fractal patch antenna for multi frequency and ultra-wide bandwidth operations," Progress In Electromagnetics Research C, Vol. 16, 25-35, 2010.
    doi:10.2528/PIERC10062206

    14. Azari, A. and J. Row, "Ultrawide band fractal microstrip antenna design," Progress In Electromagnetics Research C, Vol. 2, 7-12, 2008.
    doi:10.2528/PIERC08031005

    15. Saidatul, N. A., A. A. H. Azremi, R. B. Ahmad, J. P. Soh, and F. Malek, "Multiband fractal planar inverted F-antenna for mobile phone applications," Progress In Electromagnetics Research B, Vol. 14, 127-148, 2009.
    doi:10.2528/PIERB09030802

    16. Salmasy, M. P., F. Hojat Kasmani, and M. N. Azarmanesh, "A novel broadband fractal Sierpinski shaped microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008.

    17. Kazim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.

    18. Lamecki, A. and P. Debicki, "Broadband properties of a Minkowski fractal curve antenna," 14th International Conference on Microwaves, Radar and Wireless Communications, Vol. 3, 785-788, May 2002.

    19. Song, C. T. P., P. S. Hall, H. Ghafouri-Shiraz, and D. Wake, "Fractal stacked monopole with very wide bandwidth," IEE Elecronics Letters, Vol. 35, No. 12, 945-946, 1999.
    doi:10.1049/el:19990634

    20. Vinoy, K. J., K. A. Jose, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transaction on Antennas and Propagation, Vol. 51, No. 9, Sep. 2003.
    doi:10.1109/TAP.2003.816352

    21. Altschuler, E. E., "The traveling wave linear antenna," IEEE Transaction on Antennas and Propagation, Vol. 9, No. 4, 324-329, 1961.
    doi:10.1109/TAP.1961.1145026