Vol. 19
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-01-10
The Effect of Electrode Materials on the Optical Characteristics of Infrared Quantum Dot-Light Emitting Devices
By
Progress In Electromagnetics Research C, Vol. 19, 47-59, 2011
Abstract
We present an optical model based on Green function to investigate the effect of using Single Wall Carbon Nanotube (SWCNT) as anode for infrared light emitting devices (IR QD-LEDs). To the best of our knowledge there is no report in using SWCNT as anode in IR QD-LEDs. We have studied the emitted power distribution among the different optical modes (air, substrate, anode/organics, and surface plasmon modes (SP)), angular intensity distribution, and the emission spectral characteristics. We have found that the light outcoupling efficiency of IR QD-LEDs based on SWCNT as anode was increased nearly by a factor of 4 relative to that one based on indium-tin oxide (ITO). We also investigated the effect of using different cathode materials on the optical characteristics of IR QD-LEDs.
Citation
Ahmed E. Farghal, Swelem Wageh, and Atef El-Sayed Abou El-Azm, "The Effect of Electrode Materials on the Optical Characteristics of Infrared Quantum Dot-Light Emitting Devices," Progress In Electromagnetics Research C, Vol. 19, 47-59, 2011.
doi:10.2528/PIERC10112602
References

1. Kima, H., C. M. G. A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708

2. Li, J., L. Hu, L. Wang, Y. Zhou, G. Grüner, and T. J. Marks, "Organic light-emitting diodes having carbon nanotube anodes," Nano Lett., Vol. 6, No. 11, 2472-2477, 2006.
doi:10.1021/nl061616a

3. Zhang, D., K. Ryu., X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, "Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes," Nano Lett., Vol. 6, No. 9, 1880-1886, 2006.
doi:10.1021/nl0608543

4. Green, A. A. and M. C. Hersam, "Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes," Nano Lett., Vol. 8, No. 5, 1417-1422, 2008.
doi:10.1021/nl080302f

5. Contreras, M., T. Barnes, J. van de Lagemaat, G. Rumbles, T. J. Coutts, C. Weeks, P. Glatkowski, I. Levitsky, and J. Peltola, "Application of single-wall carbon nanotubes as transparent electrodes in Cu (In, Ga) Se2-based solar cells," IEEE Photovoltaic Energy Conversion Conference, Waikoloa, Hawaii, 2006.

6. Kim, H., C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708

7. Steckel, J. S., et al. "1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device," Advanced Materials, Vol. 15, No. 21, 1862-1866, 2003.
doi:10.1002/adma.200305449

8. Zhang, M., S. F., A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets," Science, Vol. 309, No. 5738, 1215-1219, 2005.
doi:10.1126/science.1115311

9. Weeks, C., et al. "Single-wall carbon nanotubes as transparent electrodes for photovoltaics," IEEE Photovoltaic Energy Conversion Conference, Waikoloa, Hawaii, 2006.

10. Celebi, K., T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Optics Express, Vol. 15, No. 4, 1762-1772, 2007.
doi:10.1364/OE.15.001762

11. Farghal, A. E., S. Wageh, and A. E.-S. Abou-El-Azm, "Electromagnetic modeling of outcoupling efficiency and light emission in near-infrared quantum dot light emitting devices," Progress In Electromagnetics Research B, Vol. 24, 263-284, 2010.
doi:10.2528/PIERB10070206

12. Crawford, O. H., "Radiation from oscillating dipoles embedded in a layered system," J. Chem. Phys., Vol. 89, No. 10, 6017, 1988.
doi:10.1063/1.455416

13. Bulovic, V., V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, "Weak microcavity effects in organic light-emitting devices," Phys. Rev. B, Vol. 58, No. 7, 3730, 1998.
doi:10.1103/PhysRevB.58.3730

14. Kahen, K. B., "Rigorous optical modeling of multilayer organic light-emitting diode devices," Appl. Phys. Lett., Vol. 78, No. 12, 1649, 2001.
doi:10.1063/1.1356453

15. Chen, et al., "Electromagnetic modeling of organic light-emitting devices," Journal of Lightwave Technology, Vol. 24, No. 6, 2450, 2006.
doi:10.1109/JLT.2006.874591

16. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," Advances in Chemical Physics, I. Prigogine and S. A. Rice (eds.), 1{65, Wiley, 1978.

17. Himcinschi, C., N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition ," Appl. Phys. A, Vol. 80, No. 3, 551-555, 2005.
doi:10.1007/s00339-004-2973-7

18. Palik, E. D. and Handbook of Optical Constants of Solids, Academic, New York, 1985.

19. Wang, T., Light scattering study on single wall carbon nanotube (SWNT) dispersions, Thesis, Georgia Institute of Technology, 2004.

20. Wehrenberg, B. L., C. Wang, and P. Guyot-Sionnest, "Interband and intraband optical studies of pbse colloidal quantum dots," J. Phys. Chem. B, Vol. 106, No. 41, 10634-10640, 2002.
doi:10.1021/jp021187e

21. Tessler, N., V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light-emitting diodes," Science, Vol. 295, No. 5559, 1506-1508, 2002.
doi:10.1126/science.1068153

22. Bourdakos, K. N., D. M. Dissanayake, T. Lutz, S. R. Silva, and R. J. Curry, "Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device," Appl. Phys. Lett., Vol. 92, No. 15, 153311, 2008.
doi:10.1063/1.2909589