Vol. 20
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-03-17
Novel CRLH TL Metamaterial and Compact Microstrip Branch-Line Coupler Application
By
Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011
Abstract
A novel resonate-type composite right/left handed transmission line (CRLH TL) is presented based on a high-low impedance section and a capacitive gap on the conductor strip, and a Minkowski-loop-shaped complementary split ring resonators (ML-CSRRs) etched on the ground plane. Influence of different iteration orders on the performance of novel CRLH TL and miniaturization mechanism are investigated in depth by electrical simulation (an analysis of circuit model) together with planar electromagnetic (EM) simulation. The close-form results of negative refractive index and complex propagation constant are provided by constitutive parameters retrieval method. For application, a compact branch-line coupler (BLC) centered at 0.88GHz (GSM band) is designed, fabricated and measured. The upper signal line of CRLH impedance transformer is constructed as Koch curves of first order to facilitate further integration of the BLC. Exact design method for fractal implementation is involved. Measurement results indicate that the proposed coupler achieves a comparable 81% size reduction and good in-band performance with regard to already covered ones. The concept, validated by consistent measurement data, is of practical value for other components design.
Citation
He-Xiu Xu Guang-Ming Wang Jian-Gang Liang , "Novel CRLH TL Metamaterial and Compact Microstrip Branch-Line Coupler Application," Progress In Electromagnetics Research C, Vol. 20, 173-186, 2011.
doi:10.2528/PIERC10121805
http://www.jpier.org/PIERC/pier.php?paper=10121805
References

1. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.

2. Bonache, J., et al., "Application of composite right/left handed (CRLH) transmission lines based on complementary split ring resonators (CSRRs) to the design of dual-band microwave components," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 524-526, 2008.
doi:10.1109/LMWC.2008.2001011

3. Zhang, Y., L. Hu, and S.-L. He, "A tunable dual-broad-band branch-line coupler utilizing composite right/left-handed transmission lines," Journal of Zhejiang University Science, Vol. 6A, No. 6, 483-486, 2005.
doi:10.1631/jzus.2005.A0483

4. Chi, P.-L. and T. Itoh, "Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1207-1215, 2009.
doi:10.1109/TMTT.2009.2017350

5. Chen, W.-L. and G.-M. Wang, "Design of novel miniaturized fractal-shaped branch-line couplers," Microwave Opt. Technol. Lett., Vol. 50, No. 5, 1198-1201, 2008.
doi:10.1002/mop.23316

6. Ghali, H. and T. A. Moselhy, "Miniaturized fractal ratrace,branch-line and coupled-line hybrids," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 11, 2513-2520, 2004.
doi:10.1109/TMTT.2004.837154

7. Sun, K.-O., S.-J. Ho, C.-C. Yen, and D. van der Weide, "A compact branch-line coupler using discontinuous microstrip lines," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 8, 519-520, 2005.
doi:10.1109/LMWC.2005.852789

8. Tang, C.-W., M.-G. Chen, and C.-H. Tsai, "Miniaturization of microstrip branch-line coupler with dual transmission lines," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 3, 185-187, 2008.
doi:10.1109/LMWC.2008.916798

6. Li, B., X. Wu, and W. Wu, "A Miniaturized branch-line coupler with wideband harmonics suppression," Progress In Electromagnetics Research Letters, Vol. 17, 181-189, 2010.
doi:10.2528/PIERL10082602

10. Crnojevic-Bengin, V., V. Radonic, and B. Jokanovic, "Fractal geometries of complementary split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 10, 2312-2321, 2008.
doi:10.1109/TMTT.2008.2003522

11. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and Y. Hu, "Microstrip approach benefits quad splitter," Microwaves & RF, Vol. 49, No. 6, 92-96, 2010.

12. Falconer, K., Fractal Geometry, J. Wiley & Sons, New York, 2003.

13. Xu, H.-X., G.-M. Wang, C.-X. Zhang, and K. Lu, "Novel design of composite right/left handed transmission line based on fractal shaped geometry of complementary split ring resonators," Journal of Engineering Design, Vol. 18, No. 1, 71-76, 2011.

14. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

15. Itoh, T., Planar Transmission Line Structures, IEEE Press, New York, 1987.

16. Chen, X., et al., "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

17. Wang, W.-X., Microwave Engineering, Ch. 5, 128-129, China National Defense Industry Press, Beijing, 2009.

18. Bahl, I., Lumped Elements for RF and Microwave Circuits, Ch. 14, 462-465, Artech House, Boston, 2003.