Vol. 22
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-07-06
Sectoral m -EBG Antenna with Multipolarization Capabilities for WiMAX Base Stations
By
Progress In Electromagnetics Research C, Vol. 22, 211-229, 2011
Abstract
A novel multipolarized sectoral antenna on a metallic electromagnetic band gap (M-EBG) surface is investigated. The M-EBG structure behaves as a partially reflecting surface (PRS) and enhances the directivity of a simple radiating source. The use of metallic structures offers a new approach to industrial partners in order to reduce costs and to facilitate design techniques. By using double layers of M-EBG structure working on orthogonal polarizations as a superstrate with a single patch feeding by two ports, multipolarization operation is achieved. This antenna provides vertical, horizontal, 0°/90°and circular polarizations with a sectoral radiation pattern in the azimuth plane. M-EBG antennas with sectoral pattern are usually designed only for vertical polarization. In order to verify the results a Bipolar M-EBG Sectoral antenna prototype for WIMAX application~[5.15-5.35] GHz is realized and measured. Finally, we study the possibility to generate circular polarization.
Citation
Mohamad Hajj Regis Chantalat Michele Lalande Bernard Jecko , "Sectoral m -EBG Antenna with Multipolarization Capabilities for WiMAX Base Stations," Progress In Electromagnetics Research C, Vol. 22, 211-229, 2011.
doi:10.2528/PIERC11020501
http://www.jpier.org/PIERC/pier.php?paper=11020501
References

1. Lindmark, B. and M. Nilsson, "On the available diversity gain from different dual-polarized antennas," IEEE J. Select. Areas Commun., Vol. 19, No. 2, 287-294, Feb. 2001.
doi:10.1109/49.914506

2. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, Jan. 1981.
doi:10.1109/TAP.1981.1142523

3. Hall, P. S., "Review of techniques for dual and circularly polarized microstrip antennas," Microstrip Antennas, The Analysis and Design of Microstrip Antennasand Arrays, D. M. Pozar and D. H. Schaubert (eds.), IEEE Press, New York, 1995.

4. Yun, W. S. and S. W. Kwon, "Wideband microstrip antennas for PCS/IMT-2000 services," IEEE Symposium on Antennas and Propagation, Vol. 3, 1398-1401, 2000.

5. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic bandgap antennas," IEEE Transaction on Microwave Theory and Techniques, Vol. 47, No. 11, 2115-2122, Nov. 1999.
doi:10.1109/22.798007

6. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, Sep. 2002.
doi:10.1109/TAP.2002.800699

7. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 9, 976-987, Sep. 1985.
doi:10.1109/TAP.1985.1143709

8. Qiu, M. and S. He, "High directivity patch antenna with both photonic bandgap substrate and photonic bangap cover," Microw. Opt. Technol. Lett., Vol. 30, No. 1, 41-44, Jul. 2001.
doi:10.1002/mop.1214

9. Trentini, G. V., "Partially reflecting sheet arrays," IEEE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, Oct. 1956.

10. Palikaras, G. K., A. P. Feresidis, and J. C. Vardaxoglou, "Cylindrical electromagnetic bandgap structures for directive base station antennas," IEEE Transactions on Antennas and Propagation, Vol. 3, No. 1, 87-89, 2004.

11. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proc. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, 2001.
doi:10.1049/ip-map:20010828

12. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, Feb. 2010.
doi:10.1109/TAP.2009.2037702

13. Hajj, M., H. Chreim, E. Rodes, E. Arnaud, D. Serhal, and B. Jecko, "Rectangular M-PRS structure for sectoral base station antenna with vertical polarization," Microw. Opt. Technol. Lett., Vol. 52, No. 4, 990, 2010.
doi:10.1002/mop.25044

14. Sauleau, R., Fabry perot resonators, 1381-1401, Encyclopedia of RF and Microwave Engineering, John Wiley and Sons, 2005.

15. Combes, P. F., "Micro-Ondes,", 228-237, Tome 2, Dunod, Paris, France, 1997.

16. Vardaxoglou, J. C., Frequency Selective Surfaces: Analysis and Design, Research Studies, Somerset, UK, 1997.