Vol. 22
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-06-22
LTCC Vertically-Stacked Cross-Coupled Bandpass Filter for Lmds Band Applications
By
Progress In Electromagnetics Research C, Vol. 22, 123-135, 2011
Abstract
This study develops a compact 28 GHz bandpass filter on a low-temperature co-fired ceramic substrate for applications in LMDS (Local Multipoint Distribution Service) bands. The filter comprises two pairs of verticallystacked cross-coupled open loops with vertical interconnection structures, achieving compactness, high integration, and superior frequency selectivity. Attaining selective response with two transmission zeros requires adjusting the couplings of adjacent resonators and external quality factor. The open loops are fed by using the three-via vertical interconnections to prevent any electrical effect on the filter. Measurements correlate closely with the simulation results: this study achieved a bandwidth of 2.1 GHz (27.6-29.7 GHz) with two zeros located at 25.8 GHz and 31.1 GHz, and a compact size of 2.69 x 2.66 x 0.4 mm3.
Citation
Kuo-Sheng Chin Cheng Hua Chen Chih Chun Chang , "LTCC Vertically-Stacked Cross-Coupled Bandpass Filter for Lmds Band Applications," Progress In Electromagnetics Research C, Vol. 22, 123-135, 2011.
doi:10.2528/PIERC11051101
http://www.jpier.org/PIERC/pier.php?paper=11051101
References

1. Chen, K.-S. and C.-Y. Chu, "A propagation study of the 28 GHz LMDS system performance with M-QAM modulations under rain fading," Progress In Electromagnetics Research, Vol. 68, 35-51, 2007.
doi:10.2528/PIER06070603

2. Kulke, R., G. Möllenbeck, W. Simon, A. Lauer, and M. Rittwege, "Point-to-multipoint transceiver in LTCC for 26 GHz," IMAPS-Nordic, 50-53, Stockholm, 2002.

3. Chin, K.-S., H.-T. Chang, J.-A. Liu, B.-G. Chen, J.-C. Cheng, and J. S. Fu, "Stacked patch antenna array on LTCC substrate operated at 28 GHz," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 4, 527-538, 2011.
doi:10.1163/156939311794500223

4. Wang, L.-M., et al., "Cross-coupled YBCO filters with spurious suppression using tap-connection technique and skew-symmetric feeds," IEEE Trans. Applied Superconductivity, Vol. 17, 894-897, Jun. 2007.
doi:10.1109/TASC.2007.897409

5. Tang, C.-W., "Design of four-ordered cross-coupled bandpass ¯lters with low-temperature co-fired ceramic technology," IET Microw. Antennas Propag., Vol. 3, 402-409, 2009.
doi:10.1049/iet-map.2008.0118

6. Lin, C.-H., C.-H. Wang, and C.-H. Chen, "A simple design procedure for the asynchronous box-section filter," Asia-Pacific Microwave Conference Proceedings, 807-810, Thailand, 2007.

7. Di, H., B. Wu, X. Lai, and C.-H. Liang, "Synthesis of cross-coupled triple-passband filters based on frequency transformation," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 432-434, Aug. 2010.
doi:10.1109/LMWC.2010.2049829

8. Liang, C.-H., C.-H. Chen, and C.-Y. Chang, "Fabrication-tolerant microstrip quarter-wave stepped-impedance resonator filter," IEEE Trans. Microwave Theory Tech., Vol. 57, 1163-1172, May 2009.
doi:10.1109/TMTT.2009.2017345

9. Fan, J.-W., C.-H. Liang, and X.-W. Dai, "Design of cross-coupled dual-band filter with equal-length split-ring resonators," Progress In Electromagnetics Research, Vol. 75, 285-293, 2007.
doi:10.2528/PIER07060904

10. Yang, B., E. Skafidas, and R. J. Evans, "60 GHz compact integrated cross-coupled SIR-MH bandpass filter on bulk CMOS," Electronics Letters, Vol. 44, No. 12, 738-740, Jun. 2008.
doi:10.1049/el:20080599

11. Kuo, J.-T., S.-C. Tang, and S.-H. Lin, "Quasi-elliptic function bandpass filter with upper stopband extension and high rejection level using cross-coupled stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 395-405, 2011.

12. Zhan, J.-S. and J.-L. Wang, "A simple four-order cross-coupled filter with three transmission zeros," Progress In Electromagnetics Research C, Vol. 8, 57-68, 2009.
doi:10.2528/PIERC09041107

13. Wang, Z., S. Bu, and Z.-X. Luo, "A Ka-band third-order cross-coupled substrate integrated waveguide bandpass filter base on 3D LTCC," Progress In Electromagnetics Research C, Vol. 17, 173-180, 2010.
doi:10.2528/PIERC10100903

14. Hong, J.-S. and M. J. Lancaster, Microstrip Filters for RF/Microwave Application Engineering, John Wiley & Sons, New York, 2001.

15. Chin, K.-S. and D.-J. Chen, "Harmonic-suppressing bandpass filter based on coupled triangular open-loop stepped-impedance resonators," Microw. Optical Tech. Lett., Vol. 52, No. 1, 187-191.
doi:10.1002/mop.24866

16. Chin, K.-S. and D.-J. Chen, "Novel microstrip bandpass filters using direct-coupled triangular stepped-impedance resonators for spurious suppression," Progress In Electromagnetics Research Letters, Vol. 12, 11-20, 2009.
doi:10.2528/PIERL09090602

17. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator fiiters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

18. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

19. Wang, Z., X. Zeng, B. Yan, R. Xu, and W. Lin, "A millimeter-wave E-plane band-pass filter using multilayer low temperature co-fired ceramic (LTCC) technology," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 1, 71-79, 2010.
doi:10.1163/156939310790322091

20. Panther, A., C. Glaser, M. G. Stubbs, and J. S. Wight, "Vertical transitions in low temperature co-fired ceramics for LMDS applications," IEEE MTT-S Int Microwave Symp Dig., 1907-1910, 2001.

21. Valois, R., D. Baillargeat, S. Verdeyme, M. Lahti, and T. Jaakola, "High performance of shielded LTCC vertical transitions from DC up to 50 GHz," IEEE Trans. Microwave Theory Tech., Vol. 53, 2026-2032, 2005.
doi:10.1109/TMTT.2005.848832

22. Stark, A. and A. F. Jacob, A broadband vertical transition for millimeter-wave applications, Proceedings of the 38th European Microwave Conference, 476-479, 2008.

23. Stark, A., H. Olbert, and A. F. Jacob, Defected and floating ground structures for vertical interconnects, Proceedings of the 39th European Microwave Conference, 153-156, 2009.

24. Xia, L., R.-M. Xu, and B. Yan, "LTCC interconnect modeling by support vector regression," Progress In Electromagnetics Research, Vol. 69, 67-75, 2007.
doi:10.2528/PIER06120503