Vol. 22
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-06-29
Modified Photoimageable Thick-Film Process for Millimeter-Wave Rectangular Waveguide Applications
By
Progress In Electromagnetics Research C, Vol. 22, 137-150, 2011
Abstract
This paper presents the design and fabrication of a class of dielectric filled rectangular waveguides using a multilayer photoimageable thick-film technique. The original fabrication technique is modified to shorten fabrication time and improve waveguide thickness to reduce transmission structure losses. The materials used are first characterized before the wave-guiding properties are extracted. The fabricated waveguides show excellent results in term of loss and a 1% variation in permittivity over a wide frequency range of 10-100 GHz. To demonstrate the practical applications of this modified fabrication technique, 5th and 3rd order band-pass filters are designed and fabricated. The different incertitude on the fabrication issues is studied showing an effect on the bandwidth and central frequency. The measurement results of the fabricated prototypes agree well with the simulated ones. A broadband 3 dB coupler is designed and fabricated covering both V and W bands. The measurements results for this circuit show good performance with 23% of bandwidth and are in good agreement with the simulations.
Citation
Maxime Daigle Tarek Djerafi Ke Wu , "Modified Photoimageable Thick-Film Process for Millimeter-Wave Rectangular Waveguide Applications," Progress In Electromagnetics Research C, Vol. 22, 137-150, 2011.
doi:10.2528/PIERC11051606
http://www.jpier.org/PIERC/pier.php?paper=11051606
References

1. Razavi, B., "A 60-GHz CMOS receiver front-end," IEEE J. Solid-State Circuits, Vol. 41, No. 1, 17-22.
doi:10.1109/JSSC.2005.858626

2. Smulders, P., "Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions," IEEE Communications Magazine, Vol. 40, No. 1, 140-147, 2002.
doi:10.1109/35.978061

3. Martin, C., J. Lovgerg, S. Clark, and J. Galliano, Real time passive millimeter-wave imaging from a helicopter platform, Proceedings of the 19th Digital Avionics Systems Conferences, Vol. 1, 2B1/1-2B1/8, 2000.

4. Essen, H., A. Wahlen, R. Sommer, W. Johannes, J. Wilcke, M. Schlechtweg, and A. Tessmann, A versatile, miniaturized high performance W-band radar, German Microwave Conference, 1-4, 2009.

5. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- a new concept for high-frequency electronics and opto-electronics," 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003, TEL-SIKS 2003, Vol. 1, P-III-P-X, 2003.

6. Deslandes, D., "Design equations for tapered microstrip-to-substrate integrated waveguide transitions," IMS 2010, 704-708, 2010.

7. Hirokawa, J. and M. Ando, "Single-layer waveguide consisting of posts for plane wave excitation in parallel plate," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 5, 625-630, May 1998.

8. Aftanasar, M. S., P. R. Young, I. D. Robertson, J. Minalgiene, and S. Lucyszyn, "Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides," Electronic Letters, Vol. 37, No. 18, 1122-1123, 2001.
doi:10.1049/el:20010750

9. Stephens, D., P. R. Young, and I. D. Robertson, "Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3832-3838, 2005.
doi:10.1109/TMTT.2005.859862

10. Henry, M., C. E. Free, B. S. Izqueirdo, J. Batchelor, and P. Young, "Millimeter wave substrate integrated waveguide antennas: Design and fabrication analysis," IEEE Transactions on Advanced Packaging, Vol. 32, No. 1, 93-100, 2009.
doi:10.1109/TADVP.2008.2011284

11. Samanta, K. K., D. Stephens, and I. D. Robertson, "Ultrawide-band characterisation of photoimageable thick film materials for microwave and millimeter-wave design," IEEE MTT-S Int. Microwave Symp., 2005.

12. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structure, Artech House, Dedham, 1985.

13. Marcuvitz, N., Waveguide Handbook, McGraw-Hill, 1951.

14. Sammoura, F., Y.-K. Fuh, and L. Lin, "Micromachined plastic W-band bandpass filters," Sensors and Actuators, Vol. 147, 47-51, 2008.
doi:10.1016/j.sna.2008.03.005

15. Riblet, H. J., The short-slot hybrid junction, Proc. IRE, Vol. 40, 180-184, Feb. 1952.

16. Hildebrand, L. T., "Results for a simple compact narrow-wall directional coupler," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 6, 231-232, Jun. 2000.
doi:10.1109/75.852425

17. Hao, Z. C., W. Hong, J. X. Chen, H. X. Zhou, and K.Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 5, Oct. 2006.

18. Cassivi, Y., D. Deslandes, and K. Wu, Substrate integrated waveguide directional couplers, ASIA-Pacific Conf., Kyoto, 2002.

19. Djerafi, T., M. Daigle, H. Boutayeb, X. Zhang, and K. Wu, Substrate integrated waveguide six-port broadband front-end circuit for millimeter-wave radio and radar systems, European Microwave Conference, 77-80, 2009.