Vol. 22
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-06-30
Design of Concurrent Low-Noise Amplifier for Multi-Band Applications
By
Progress In Electromagnetics Research C, Vol. 22, 165-178, 2011
Abstract
A concurrent multi-band low-noise amplifier (LNA) for both WLAN and WiMAX applications covering 2.4-2.7 GHz, 3.3-3.8 GHz and 5.1-5.9 GHz is mainly investigated. The proposed LNA consists of two cascaded common-source stages and employs stepped-impedance transformers and series and shunt feedback techniques to obtain good return loss, low noise and high linearity simultaneously. Test results show that the LNA features input and output return loss of 12 dB, gain of 21 dB, and noise figure of 2\,dB across the three bands of operation, which are the state of the art among the counterparts.
Citation
Gao-Li Ning, Zhen-Ya Lei, Long-Jun Zhang, Rong Zou, and Li Shao, "Design of Concurrent Low-Noise Amplifier for Multi-Band Applications," Progress In Electromagnetics Research C, Vol. 22, 165-178, 2011.
doi:10.2528/PIERC11052405
References

1. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers --- Theory, design, and applications," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, 288-301, 2002.
doi:10.1109/22.981282

2. Perumana, B. G., J. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, "Resistive-feedback CMOS low-noise amplifiers for multiband applications ," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1228-1225, 2008.
doi:10.1109/TMTT.2008.920181

3. Phansathitwong, K., H. Sjoland, and P. Andreani, "Low power multi-band CMOS receiver front-end," Proc. PRIME Conf., 1-4, 2010.

4. Okazaki, H., K. Kawai, A. Fukuda, T. Furuta, and S. Narahashi, "Reconfigurable amplifier towards enhanced selectivity of future multi-band mobile terminals ," International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions , 1-4, 2010.
doi:10.1109/IMWS.2010.5441012

5. Malmqvist, R., P. Rantakari, C. Samuelsson, M. Lahti, S. Cheng, and J. Saijets, "RF MEMS based impedance matching networks fortunable multi-band microwave low noise amplifiers," Proc. International Semiconductor Conf., 303-306, 2009.

6. Phan, A.-T. and R. Farrell, "Reconfigurable multiband multimode LNA for LTE/GSM, WiMAX, and IEEE 802.11.a/b/g/n," Proc. Electronics, Circuits, and Systems Conf., 78-81, 2010.

7. Tzeng, F., A. Jahanian, and P. Heydari, "A multiband inductor-reuse CMOS low-noise amplifier," IEEE Transactions on Circuits and Systems --- II: Express Briefs, Vol. 55, No. 3, 209-213, 2008.
doi:10.1109/TCSII.2008.918922

8. Lu, L.-H., H.-H. Hsieh, and Y.-S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 685-687, Oct. 2005.
doi:10.1049/el:20072695

9. Chang, S.-F., W.-L. Chen, and C.-H. Hsu, "CMOS dual-band variable-gain amplifier for 3G-WCDMA and WLAN dual-mode RF receivers," Electronics Letters, Vol. 43, No. 2, 102-103, Jan. 2007.
doi:10.2528/PIERC10090201

10. Li, J.-Y., W.-J. Lin, M.-P. Houng, and L.-S. Chen, "A compact wideband matching 0.18-μm CMOS UWB low-noise amplifier using active feedback technique ," Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010.
doi:10.1049/el.2009.3052

11. Hsieh, J.-Y., T. Wang, and S.-S. Lu, "Wideband low-noise amplifier by LC load-reusing technique," Electronics Letters, Vol. 45, No. 25, 1280-1281, 2009.
doi:10.2528/PIERC08090903

12. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.
doi:10.1049/el.2010.2121

13. Wang, C.-H., Y.-T. Chiu, and Y.-S. Lin, "3.1 dB NF 20-29 GHz CMOS UWB LNA using a T-match input network," Electronics Letters, Vol. 46, No. 19, 1312-1313, 2010.
doi:10.2528/PIERC09062202

14. Wong, S.-K., F. Kung Wai Lee, S. Maisurah, M. N. B. Osman, and S. J. Hui, "Design of 3 to 5 GHz CMOS low noise amplifier for ultra-wideband (UWB) system ," Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009.
doi:10.1163/156939310791036412

15. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative GM cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
doi:10.1109/JSSC.2004.836344

16. Ismail, A. and A. A. Abidi, "A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network," IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, 2269-2277, Dec. 2004.
doi:10.1109/TMTT.2010.2090357

17. Sapone, G. and G. Palmisano, "A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 3, 678-686, Mar. 2011.
doi:10.1109/TMTT.2010.2090357

18. Kao, C.-Y., Y.-T. Chiang, and J.-R. Yang, "A concurrent multi-band low-noise amplifier for WLAN/WiMAX applications," Proc. International Electro. Information Technology Conf., 514-517, 2008.

19. Wang, S. and B.-Z. Huang, "A high-gain CMOS LNA for 2.4/5.2-GHz WLAN applications," Progress In Electromagnetics Research C, Vol. 21, 155-167, 2011.

20. Lin, Y.-T. and S.-S. Lu, "A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 10, 463-465, Oct. 2004.

21. Fagotti, R., A. Cidronali, and G. Manes, "Concurrent hex-band GaN power amplifier for wireless communication systems," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 2, 89-91, 2011.
doi:10.1002/mop.21074

22. Lin, Y.-S. and K.-N. Liao, "A concurrent multiband SiGe LNA for 1.8/1.9-GHz GSM, 2.4/5.2/5.7-GHz WLAN, and 5-7-GHz UWB system applications," Microw. Optical Technol. Lett., Vol. 47, No. 1, 36-41, Oct. 2005.
doi:10.1002/mop.21074

23. Duo, X.-Z., L.-R. Zheng, M. Ismail, and H. Tenhunen, "A concurrent multi-band LNA for multi-standard radios," Proceedings of the International Symposium on Circuits and Systems, 3982-3985, May 2005.

24. Zulfa, H.-A., Y.-H. Chow, and Y. W. Eng, "A low-voltage, fully-integrated (1.5{6) GHz low-noise amplifier in E-mode pHEMT technology for multiband, multimode applications," Proc. European Microwave Integrated Circuits Conf., 306-309, 2008.
doi:10.1109/TMTT.2004.827014

25. Nguyen, T.-K., C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, "CMOS low-noise amplifier design optimization techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 5, 1433-1442, 2004.
doi:10.1109/TCSII.2010.2050943

26. He, K.-H., M.-T. Li, C.-M. Li, and J.-H. Tarng, "Parallel-RC feedback low-noise amplifier for UWB applications," IEEE Transactions on Circuits and Systems --- II: Express Briefs, Vol. 57, No. 8, 582-586, 2010.
doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

27. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 611-613, 2009.
doi:10.1109/LMWC.2009.2029732