Vol. 22

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-06-30

Design of Concurrent Low-Noise Amplifier for Multi-Band Applications

By Gao-Li Ning, Zhen-Ya Lei, Long-Jun Zhang, Rong Zou, and Li Shao
Progress In Electromagnetics Research C, Vol. 22, 165-178, 2011
doi:10.2528/PIERC11052405

Abstract

A concurrent multi-band low-noise amplifier (LNA) for both WLAN and WiMAX applications covering 2.4-2.7 GHz, 3.3-3.8 GHz and 5.1-5.9 GHz is mainly investigated. The proposed LNA consists of two cascaded common-source stages and employs stepped-impedance transformers and series and shunt feedback techniques to obtain good return loss, low noise and high linearity simultaneously. Test results show that the LNA features input and output return loss of 12 dB, gain of 21 dB, and noise figure of 2\,dB across the three bands of operation, which are the state of the art among the counterparts.

Citation


Gao-Li Ning, Zhen-Ya Lei, Long-Jun Zhang, Rong Zou, and Li Shao, "Design of Concurrent Low-Noise Amplifier for Multi-Band Applications," Progress In Electromagnetics Research C, Vol. 22, 165-178, 2011.
doi:10.2528/PIERC11052405
http://www.jpier.org/PIERC/pier.php?paper=11052405

References


    1. Hashemi, H. and A. Hajimiri, "Concurrent multiband low-noise amplifiers --- Theory, design, and applications," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 1, 288-301, 2002.
    doi:10.1109/22.981282

    2. Perumana, B. G., J. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, "Resistive-feedback CMOS low-noise amplifiers for multiband applications ," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 5, 1228-1225, 2008.
    doi:10.1109/TMTT.2008.920181

    3. Phansathitwong, K., H. Sjoland, and P. Andreani, Low power multi-band CMOS receiver front-end, Proc. PRIME Conf., 1-4, 2010.

    4. Okazaki, H., K. Kawai, A. Fukuda, T. Furuta, and S. Narahashi, "Reconfigurable amplifier towards enhanced selectivity of future multi-band mobile terminals ," International Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions , 1-4, 2010.
    doi:10.1109/IMWS.2010.5441012

    5. Malmqvist, R., P. Rantakari, C. Samuelsson, M. Lahti, S. Cheng, and J. Saijets, RF MEMS based impedance matching networks fortunable multi-band microwave low noise amplifiers, Proc. International Semiconductor Conf., 303-306, 2009.

    6. Phan, A.-T. and R. Farrell, Reconfigurable multiband multimode LNA for LTE/GSM, WiMAX, and IEEE 802.11.a/b/g/n, Proc. Electronics, Circuits, and Systems Conf., 78-81, 2010.

    7. Tzeng, F., A. Jahanian, and P. Heydari, "A multiband inductor-reuse CMOS low-noise amplifier," IEEE Transactions on Circuits and Systems --- II: Express Briefs, Vol. 55, No. 3, 209-213, 2008.
    doi:10.1109/TCSII.2008.918922

    8. Lu, L.-H., H.-H. Hsieh, and Y.-S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 10, 685-687, Oct. 2005.
    doi:10.1049/el:20072695

    9. Chang, S.-F., W.-L. Chen, and C.-H. Hsu, "CMOS dual-band variable-gain amplifier for 3G-WCDMA and WLAN dual-mode RF receivers," Electronics Letters, Vol. 43, No. 2, 102-103, Jan. 2007.
    doi:10.2528/PIERC10090201

    10. Li, J.-Y., W.-J. Lin, M.-P. Houng, and L.-S. Chen, "A compact wideband matching 0.18-μm CMOS UWB low-noise amplifier using active feedback technique ," Progress In Electromagnetics Research C, Vol. 16, 161-169, 2010.
    doi:10.1049/el.2009.3052

    11. Hsieh, J.-Y., T. Wang, and S.-S. Lu, "Wideband low-noise amplifier by LC load-reusing technique," Electronics Letters, Vol. 45, No. 25, 1280-1281, 2009.
    doi:10.2528/PIERC08090903

    12. Dorafshan, A. and M. Soleimani, "High-gain CMOS low noise amplifier for ultra wide-band wireless receiver," Progress In Electromagnetics Research C, Vol. 7, 183-191, 2009.
    doi:10.1049/el.2010.2121

    13. Wang, C.-H., Y.-T. Chiu, and Y.-S. Lin, "3.1 dB NF 20-29 GHz CMOS UWB LNA using a T-match input network," Electronics Letters, Vol. 46, No. 19, 1312-1313, 2010.
    doi:10.2528/PIERC09062202

    14. Wong, S.-K., F. Kung Wai Lee, S. Maisurah, M. N. B. Osman, and S. J. Hui, "Design of 3 to 5 GHz CMOS low noise amplifier for ultra-wideband (UWB) system ," Progress In Electromagnetics Research C, Vol. 9, 25-34, 2009.
    doi:10.1163/156939310791036412

    15. Yoon, J., H. Seo, I. Choi, and B. Kim, "Wideband LNA using a negative GM cell for improvement of linearity and noise figure," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 619-630, 2010.
    doi:10.1109/JSSC.2004.836344

    16. Ismail, A. and A. A. Abidi, "A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network," IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, 2269-2277, Dec. 2004.
    doi:10.1109/TMTT.2010.2090357

    17. Sapone, G. and G. Palmisano, "A 3-10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 3, 678-686, Mar. 2011.
    doi:10.1109/TMTT.2010.2090357

    18. Kao, C.-Y., Y.-T. Chiang, and J.-R. Yang, A concurrent multi-band low-noise amplifier for WLAN/WiMAX applications, Proc. International Electro. Information Technology Conf., 514-517, 2008.

    19. Wang, S. and B.-Z. Huang, "A high-gain CMOS LNA for 2.4/5.2-GHz WLAN applications," Progress In Electromagnetics Research C, Vol. 21, 155-167, 2011.

    20. Lin, Y.-T. and S.-S. Lu, "A 2.4/3.5/4.9/5.2/5.7-GHz concurrent multiband low noise amplifier using InGaP/GaAs HBT technology," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 10, 463-465, Oct. 2004.

    21. Fagotti, R., A. Cidronali, and G. Manes, "Concurrent hex-band GaN power amplifier for wireless communication systems," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 2, 89-91, 2011.
    doi:10.1002/mop.21074

    22. Lin, Y.-S. and K.-N. Liao, "A concurrent multiband SiGe LNA for 1.8/1.9-GHz GSM, 2.4/5.2/5.7-GHz WLAN, and 5-7-GHz UWB system applications," Microw. Optical Technol. Lett., Vol. 47, No. 1, 36-41, Oct. 2005.
    doi:10.1002/mop.21074

    23. Duo, X.-Z., L.-R. Zheng, M. Ismail, and H. Tenhunen, A concurrent multi-band LNA for multi-standard radios, Proceedings of the International Symposium on Circuits and Systems, 3982-3985, May 2005.

    24. Zulfa, H.-A., Y.-H. Chow, and Y. W. Eng, A low-voltage, fully-integrated (1.5{6) GHz low-noise amplifier in E-mode pHEMT technology for multiband, multimode applications, Proc. European Microwave Integrated Circuits Conf., 306-309, 2008.
    doi:10.1109/TMTT.2004.827014

    25. Nguyen, T.-K., C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, "CMOS low-noise amplifier design optimization techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 5, 1433-1442, 2004.
    doi:10.1109/TCSII.2010.2050943

    26. He, K.-H., M.-T. Li, C.-M. Li, and J.-H. Tarng, "Parallel-RC feedback low-noise amplifier for UWB applications," IEEE Transactions on Circuits and Systems --- II: Express Briefs, Vol. 57, No. 8, 582-586, 2010.
    doi: --- Piped Query must contain either 9 (for journals) or 11 (for books/conference proceedings) pipes.

    27. Liu, X., Y. Liu, S. Li, F. Wu, and Y. Wu, "A three-section dual-band transformer for frequency-dependent complex load impedance," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 10, 611-613, 2009.
    doi:10.1109/LMWC.2009.2029732