Vol. 26
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2011-12-12
Design of a Wide Band Eight-Way Compact SIW Power Combiner Fed by a Low Loss GCPW-to-SIW Transition
By
Progress In Electromagnetics Research C, Vol. 26, 97-110, 2012
Abstract
Ultra wideband components have been developed using SIW technology. The various newly developed components include a GCPW transition, Y and T-junctions. The GCPW transition covers over 10 GHz bandwidth with less than 0.4 dB insertion loss. The optimized T and Y-junctions have relatively wide bandwidths of greater than 40% that have less than 0.6\,dB insertion loss. The developed transition was utilized to design an X-band eight-way power divider that demonstrated excellent performance over a 4 GHz bandwidth with less than ±4º and ±0.9 dB phase and amplitude imbalance, respectively. Theoretical and experimental results are presented and compared with previously designed SIW power dividers. The developed SIW power divider has a low profile and is particularly suitable for circuits' integration.
Citation
Robab Kazemi, Ramazanali Sadeghzadeh, and Aly Fathy, "Design of a Wide Band Eight-Way Compact SIW Power Combiner Fed by a Low Loss GCPW-to-SIW Transition," Progress In Electromagnetics Research C, Vol. 26, 97-110, 2012.
doi:10.2528/PIERC11110909
References

1. Hao, Z., W. Hong, H. Li, H. Zhang, and K. Wu, "Multiway broadband substrate integrated waveguide (SIW) power divider," IEEE Ant. and Propag. Soc. Int. Symp., Vol. 1A, 639-642, 2005.

2. Yang, Y., C. Zhang, S. Lin, and A. Fathy, "Development of an ultra wideband Vivaldi antenna array," IEEE Ant. and Propag. Soc. Int. Symp., Vol. 1A, 606-609, 2005.

3. Germain, S., D. Deslandes, and K.Wu, "Development of substrate integrated waveguide power dividers," IEEE Canadian Conf. on Elect. and Comp. Eng., 1921-1924, 2003.

4. Hao, Z., W. Hong, J. Chen, and K.Wu, "A novel feeding technique for antipodal linearly tapered slot antenna array," EEE MTT-S Int. Microw. Symp., 1641-1643, 2005.

5. Yang, S., A. Elsherbini, S. Lin, A. Fathy, A. Kamel, and H. Elhennawy, "A highly efficient Vivaldi antenna array design on thick substrate and fed by SIW structure with integrated GCPW feed," IEEE Ant. and Propag. Int. Symp., 1985-1988, 2007.
doi:10.1109/APS.2007.4395912

6. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits - A new concept for high-frequency electronics and optoelectronics," 6th Int. Conf. Telecomm. in Modern Satellite, Cable and Broadcasting Service (TELSIKS), Vol. 1, III-X, 2003.

7. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proc. Microwaves, Antennas and Propag., Vol. 152, No. 1, 35-42, 2005.
doi:10.1049/ip-map:20040726

8. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 × 4 butler matrix in SIW technology for wide band high power applications ," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
doi:10.2528/PIERB11062004

9. Zheng, B., Z. Zhao, and Y. Lv, "A K-band SIW filter with bypass coupling substrate integrated circular cavity (SICC) to improved stopband performance for satellite communication," Progress In Electromagnetics Research C, Vol. 17, 95-104, 2010.
doi:10.2528/PIERC10092403

10. Qiang, L., Y.-J. Zhao, Q. Sun, W. Zhao, and B. Liu, "A compact UWB HMSIW bandpass filter based on complementary split-ring resonators," Progress In Electromagnetics Research C, Vol. 11, 237-243, 2009.
doi:10.2528/PIERC09112102

11. Han, S., X.-L.Wang, Y. Fan, Z. Yang, and Z. He, "The generalized Chebyshev substrate integrated waveguide diplexer," Progress In Electromagnetics Research, Vol. 73, 29-38, 2007.
doi:10.2528/PIER07032002

12. Zhang, X.-C., Z.-Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

13. Che, W., E. K.-N. Yung, K.Wu, and X. Nie, "Design investigation on millimeter-wave ferrite phase shifter in substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
doi:10.2528/PIER03082801

14. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. Raja Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

15. Deslandes, D. and K. Wu, "Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides," IEEE Trans. on MTT, Vol. 53, No. 8, 2487-2499, 2005.
doi:10.1109/TMTT.2005.852778

16. Lin, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetics Research, Vol. 90, 369-384, 2009.
doi:10.2528/PIER09020503

17. Yang, S., S. H. Suleiman, and A. Fathy, "Low profile multi-layer slotted substrate integrated waveguide (SIW) array antenna with folded feed network for mobile DBS applications," IEEE Ant. and Propag. Soc. Int. Symp., 473-476, 2007.

18. Yang, S. and A. Fathy, "Synthesis of a compound T-junction for a two-way splitter with arbitrary power ratio," IEEE MTT-S Int. Microw. Symp., 985-988, 2005.

19. Yang, S. and A. Fathy, "Design equations of arbitrary power split ratio waveguide T-junctions using a curve fitting approach," Int. J. of RF and Microw. Computer-Aided Eng., Vol. 19, No. 1, 91-98, 2009.
doi:10.1002/mmce.20320

20. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguides," IEEE Trans. on Microw. Theory and Techniques, Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303