Vol. 26
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-01-05
Miniaturized Dual-Mode Resonators with Minkowski-Island-Based Fractal Patch for WLAN Dual-Band Systems
By
Progress In Electromagnetics Research C, Vol. 26, 229-243, 2012
Abstract
The miniaturized dual-mode dual-band band-pass filters (BPF) using Minkowski-island-based (MIB) fractal patch resonators are proposed in this paper. The BPF is mainly formed by a square patch resonator in which a MIB fractal configuration with 2nd order iteration is embedded in the patch. By perturbation and inter-digital coupling, the wide-band and dual-band responses are obtained respectively. For miniaturized wide-band design, at 2.41 GHz central frequency it has good measured characteristics including the wide bandwidth of 2.26-2.56 GHz (3-dB fractional bandwidth of 12.4%), low insertion loss of 0.72 dB, high rejection level (-52.5/-44.9 dB), and a patch size reduction with 60.6%. For compact dual-band design, the proposed filter covers the required bandwidths for WLAN bands (2.20-2.96 GHz and 4.74-5.85 GHz). The patch size reduction of 78.1% is obtained. Two transmission zeros are placed between the two pass-bands and resulted in good isolation.
Citation
Ji-Chyun Liu, Hsin-Hsiang Liu, Kuan-Dih Yeh, Chin-Yen Liu, Bing-Hao Zeng, and Chih-Chiang Chen, "Miniaturized Dual-Mode Resonators with Minkowski-Island-Based Fractal Patch for WLAN Dual-Band Systems," Progress In Electromagnetics Research C, Vol. 26, 229-243, 2012.
doi:10.2528/PIERC11111502
References

1. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator ," Electron. Lett., Vol. 8, No. 12, 302-303, Jun. 1972.
doi:10.1049/el:19720223

2. Zhu, L., P. M. Wecowski, and K. Wu, "New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction," IEEE Trans. Microwave Theory & Tech., Vol. 47, No. 5, 650-654, May 1990.
doi:10.1109/22.763171

3. Zhu, L., B. C. Tan, and S. J. Quek, "Miniaturized dual-mode bandpass filter using inductively loaded cross-slotted patch resonator," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 1, 22-24, Jan. 2005.
doi:10.1109/LMWC.2004.840967

4. Tu, W. H. and K. Chang, "Miniaturized dual-mode bandpass filter with harmonic control," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 15, 838-840, Dec. 2005.

5. Wu, S., M. H. Weng, S. B. Jhong, and M. S. Lee, "A novel crossed slotted patch dual-mode bandpass filter with two transmission zeros," Microwave Opt. Tech. Letters, Vol. 50, No. 3, 741-744, Mar. 2008.
doi:10.1002/mop.23219

6. Hung, C. Y., M. H. Weng, S. B. Jhong, S. Wu, and M. S. Lee, "Design of the wideband dual mode bandpass filter using stepped impedance resonators," Microwave Opt. Tech. Letters, Vol. 50, No. 4, 1104-1107, Apr. 2008.
doi:10.1002/mop.23281

7. Su, Y. K., J. R. Chen, M. H. Weng, and C. Y. Hung, "Design of a miniature and harmonic control patch dual mode bandpass filter with transmission zeros," Microwave Opt. Tech. Letters, Vol. 50, No. 8, 2161-2163, Aug. 2008.
doi:10.1002/mop.23604

8. Weng, M. H., D. S. Lee, R. Y. Yang, W. Wu, and C. L. Liu, "A sierpinski fractal-based dual mode bandpass filter," Microwave Opt. Tech. Letters, Vol. 50, No. 9, 2287-2289, Sep. 2008.
doi:10.1002/mop.23641

9. Weng, M. H., L. S. Jang, and W. Y. Chen, "A Sierpinski-based resonator applied for low loss and miniaturized bandpass filters," Microwave Opt. Tech. Letters, Vol. 51, No. 2, 411-413, Feb. 2009.
doi:10.1002/mop.24061

10. Ye, C. S., Y. K. Su, M. H. Weng, and H. W. Wu, "Resonant properties of the sierpinski-based fractal resonator and Its application on low-loss miniaturized dual mode bandpass filter," Microwave Opt. Tech. Letters, Vol. 51, No. 5, 1358-1361, May 2009.
doi:10.1002/mop.24321

11. Chen, W. L. and G. M. Wang, "Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 2, 74-76, Feb. 2009.
doi:10.1109/LMWC.2008.2011311

12. Xu, H. X., G. M. Wang, and C. X. Zhang, "Fractal-shaped UWB bandpass filter based on composite right/left handed transmission line," Electron. Lett.,, Vol. 46, No. 4, 285-287, Feb. 2010.
doi:10.1049/el.2010.3139

13. Hanna, Hanna, P. Jarry, E. Kerherve, and J. M. Pham, " A novel compact dual-mode bandpass filter using fractal shaped resonators," IEEE International Conference on Electronics Circuits and Systems, 343-346, 2006.
doi:10.1109/ICECS.2006.379795

14. Sung, Y., "Dual-mode dual-band filter with band notch structures," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 73-75, Feb. 2010.
doi:10.1109/LMWC.2009.2038434

15. Sheta, A. F., N. Dib, and A. Mohra, "Investigation of new nondegenerate dual-mode microstrip patch filter," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 1, 89-95, Feb. 2006.
doi:10.1049/ip-map:20050103

16. Liu, J. C., S. H. Chiu, C. P. Kuei, and B. H. Zeng, "A novel Minkowski-island-based fractal patch for dual-mode and miniaturization bandpass filters," Microwave Opt. Tech. Letters, Vol. 53, No. 3, 594-597, Mar. 2011.
doi:10.1002/mop.25796

17. Tsai, L. C. and C. W. Huse, "Dual-band bandpass filters using equal length coupled-serial-shunted lines and Z-transform techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

18. Kuo, J. T., T. H. Yeh, and C. C. Yeh, "Design of microstrip bandpass filters with a dual-passband response," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1331-1337, Apr. 2005.
doi:10.1109/TMTT.2005.845765

19. Huang, T. H., H. J. Chen, C. S. Chang, L. S. Chen, Y. H. Wang, and M. P. Houng, "A novel compact ring dual-mode filter with adjustable second-passband for dual-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 360-362, Jun. 2006.
doi:10.1109/LMWC.2006.875607

20. Chen, J. X., T. Y. Yum, J. L. Li, and Q. Xue, "Dual-mode dual-band bandpass filter using stacked-loop structure," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 9, 502-504, Sep. 2006.
doi:10.1109/LMWC.2006.880705

21. Zhang, X. Y. and Q. Xue, "Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators," IEEE Trans. Microwave Theory & Tech., Vol. 55, No. 10, 2183-2190, Oct. 2007.
doi:10.1109/TMTT.2007.906501

22. Wu, B., C. Liang, P. Qin, and Q. Li, "Compact dual-band filter using defected stepped impedance resonator," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 10, 674-676, Oct. 2008.
doi:10.1109/LMWC.2008.2003459

23. Luo, S. and L. Zhu, "A novel dual-mode dual-band bandpass filter based on a single ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 8, 497-499, Aug. 2009.
doi:10.1109/LMWC.2009.2024826

24. Chiou, Y. C., C. Y. Wu, and J. T. Kuo, "New miniaturized dual-mode dual-band ring resonator bandpass filter with microwave C-sections," C. Y. Wu, and J. T. Kuo, Vol. 20, No. 2, 67-69, Feb. 2010.

25. Baik, J. W., L. Zhu, and Y. S. Kim, "Dual-mode dual-band bandpass filter using balun structure for single substrate configuration ," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 11, 613-615, Nov. 2010.
doi:10.1109/LMWC.2010.2060184

26. Cohen, N., "Fractal element antennas," J. of Electron. Defense, 48-49, 1997.

27. , , , Zeland Software Inc., IE3D version 10.0, Jan. 2005.