Vol. 27
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-01-23
Coupling Reduction of Antenna Array Elements Using Small Interdigital Capacitor Loaded Slots
By
Progress In Electromagnetics Research C, Vol. 27, 15-26, 2012
Abstract
Small size capacitor loaded ground plane slots are used to reduce the mutual coupling between elements in a microstrip antenna array design. The proposed compact slots are inserted between the adjacent E-plane coupled elements in the array to limit the propagation of surface waves between the elements of the array. In order to validate the feasibility of the proposed structure, a two-element array with 0.5λo distance between centers of two patches is designed, fabricated, and measured. The measured results show a reduction in mutual coupling of 17 dB obtained between elements at the operation frequency of the array.
Citation
Adel B. Abdel-Rahman, "Coupling Reduction of Antenna Array Elements Using Small Interdigital Capacitor Loaded Slots," Progress In Electromagnetics Research C, Vol. 27, 15-26, 2012.
doi:10.2528/PIERC11111809
References

1. Alexopoulos, , N. G., I. E. Rana, and , "Mutual impedance computation between printed dipoles," IEEE Trans. Antennas Propag., Vol. 29, No. 1, , 124-128, , Jan. 1981.
doi:10.1109/TAP.1981.1142531

2. Balanis, , C. A., , Advanced Engineering Electromagnetics, , John Willy & Sons, , New York, , 1989.

3. Pozar, , D. M., D. H. Schaubert, and , "Scan blindness in infinite phased arrays of printed dipoles," IEEE Trans. Antennas Propag., Vol. 32, , 602-610, , 1984..
doi:10.1109/TAP.1984.1143375

4. Balanis, , C. A., , Antenna Theory Analysis and Design, , 2nd Ed., John Willy & Sons, , 1997.

5. Yang, , F., Y. Rahmat-Sami, and , "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

6. Zhang, , L., J. A. Castaneda, and N. G. Alexopoulos, , "Scan blindness free phased array design using PBG materials," IEEE Trans. Antennas Propag., Vol. 52, No. 8, , 2000-2007, , 2004.
doi:10.1109/TAP.2004.832516

7. Iluz, , Z., R. Shavit, and , "Microstrip antenna phased array with electromagnetic bandgap substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 6, , 1446-1453, , 2004.
doi:10.1109/TAP.2004.830252

8. Fu, , Y., N. Yuan, and , "Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials ," IEEE Antennas Wirel. Propag. Lett., Vol. 3, , 63-65, 2004.

9. Yang, , H. Y. D., J. Wang, and , "Surface waves of printed antennas on planar arti¯cial periodic dielectric structures," IEEE Trans. Antennas Propag., Vol. 49, No. 3, 444-450, , 2001.
doi:10.1109/8.918619

10. Yang, , L., M. Fan, F. Chen, J. She, and Z. Feng, , "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, , 2005.
doi:10.1109/TMTT.2004.839322

11. Farahani, , H., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate ," IEEE Antennas Wirel. Propag. Lett.,, Vol. 9, 57-59, 2010.
doi:10.1109/LAWP.2010.2042565

12. Werth, , T., J. Schoebel, and , "An electromagnetic bandgap enhanced active antenna design for microwave-based motion sensing," European Microwave Conference, 980-982, Oct. 2007.
doi:10.1109/EUMC.2007.4405359

13. Mandal, , M. K., S. Sanyal, and , "A novel defected ground structure for planar circuits," IEEE Microw. Wirel. Compon. Lett.,, Vol. 16, No. 2, 93-95, 2006.
doi:10.1109/LMWC.2005.863192

14. Abdel-Rahman, A., A. K. Verma, A. Boutejdar, and A. S. Omar, "Control of band stop response of Hi-Lo microstrip lowpass filter using slot in ground plane," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1008-1013, Mar. 2004.
doi:10.1109/TMTT.2004.823587

15. Ahn, , D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.
doi:10.1109/22.899965

16. Kim, , C. S., J. S. Lim, S. Nam, K. Y. Ang, and D. Ahn, , "Equivalent circuit modeling of spiral defected ground structure for microstrip line," Electron. Lett., , Vol. 38, 1109-1111, 2002.
doi:10.1049/el:20020742

17. Lim, , C. S., C. S., C. S. Kim, D. Ahn, Y. C. Jeong, and S. Nam, , "Design of the low-pass filters using defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 8, 2539-2545, 2005..
doi:10.1109/TMTT.2005.852765

18. Park, , J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled line bandpass ¯lter using defected ground structure with wide stopband performance," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2037-2043, 2002..
doi:10.1109/TMTT.2002.802313

19. Salehi, , M., A. Motevasselian, A. Tavakoli, and T. Heidari, "Mutual coupling reduction of microstrip antennas using defected ground structure," 10th IEEE Singapore Int. Conf. Communication Systems, ICCS 2006,, 1-5, Oct. 2006.
doi:10.1109/ICCS.2006.301375

20. Hou, D.-B., , D.-B., S. Xiao, B.-Z.Wang, L. Jiang, J.Wang, and W. Hong, "Elimination of scan blindness with compact defected ground structures in microstrip phased array ," IET Microw. Antennas Propag., Vol. 3, No. 2, 269-275, 2009.
doi:10.1049/iet-map:20080037

21. Vazquez, , C., G. Hotopan, S. Ver Hoeye, M. Fernandez, L. F. Herran, and F. Las-Heras, L. F. Herran, and F. Las-Heras , "Defected ground structur for coupling reduction between probe Fed microstrip antenna elements," PIERS Proceedings, 640-644, Jul. 2010.

22. Woo, , D. J., T. K. Lee, J. W. Lee, C. S. Pyo, and W. K. Choi, "Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2840-2847, Jun. 2006..
doi:10.1109/TMTT.2006.875450

23. Computer Simulation Technology Microwave StudioTM, , 2009..