Vol. 29
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-05-23
A New Accurate Volterra-Based Model for Behavioral Modeling and Digital Predistortion of RF Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012
Abstract
A new accurate Volterra-based model is introduced for behavioral modeling and digital predistortion (DPD) of power amplifiers (PAs). This model extends the GMP model with specific cross terms, and these augmented terms significantly increase the model's performance. The proposed model's performance is assessed using a LDMOS Doherty PA driven by two modulated signals (a 4-carrier WCDMA signal and a single carrier 16QAM signal). The experimental results in both behavioral modeling and DPD applications demonstrate that the proposed model outperforms the hybrid memory polynomial-envelope memory polynomial (HME) model and generalized memory polynomial (GMP) model. Compared with the HME model, the proposed model shows an average normalized mean square error (NMSE) improvement of 2.2 dB in the behavioral modeling, average adjacent channel power ratio (ACPR) improvement of 2.8/2.5 dB in the DPD application, and 20% reduction in the number of coe±cients. In comparison with the GMP model, the proposed model achieves higher model accuracy and better DPD performance, but reduces approximately 40% of coefficients.
Citation
Tianjiao Du Cuiping Yu Jinchun Gao Yuan'an Liu Shulan Li Yongle Wu , "A New Accurate Volterra-Based Model for Behavioral Modeling and Digital Predistortion of RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.
doi:10.2528/PIERC12032707
http://www.jpier.org/PIERC/pier.php?paper=12032707
References

1. Xu, , G., , T. Liu, Y. Ye, and T. Xu, "FPGA implementation of augmented Hammerstein predistorters for RF power amplifier linearization," Proceedings --- 2009 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Progress In Electromagnetics Re, 481-484, 2009.

2. El Maazouzi, , L., , A. Mediavilla, and P. Colantonio, , "A contribution to linearity improvement of a highly effcient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, , 2011.
doi:10.2528/PIER11051602

3. Hashmi, M. S., , Z. S. Rogojan, and F. M. Ghannouchi, , "A flexible dual-in°ection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, , 1-18, 2010.
doi:10.2528/PIERC10012609

4. Zhu, , A., , M. Wren, and T. J. Brazil, "An effcient Volterra-based behavioral model for wideband RF power amplifiers," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 787-790, 2003..
doi:10.1109/MWSYM.2003.1212488

5. Zhu, , A. , T. J. Brazil, and , "Behavioral modeling of RF power amplifiers based on pruned Volterra series," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 12, 563-565, 2004.
doi:10.1109/LMWC.2004.837380

6. Zhu, A., J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers," IEEE Trans. Microw. Theory Tech.,, Vol. 54, No. 12, 4323-4332, , 2006.
doi:10.1109/TMTT.2006.883243

7. Crespo-Cadenas, C., J. Reina-Tosinaand Maria, and J. Madero-Ayora, , "Volterra behavioral model for wideband RF amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 3, 449-457, 2007..
doi:10.1109/TMTT.2006.890514

8. Carlos, , C. C., , R. T. Javier, and J. M. A. Maria, "A new approach to pruning Volterra models for power amplifiers," IEEE Trans. Signal Process., Vol. 58, No. 4, 2113-2119, 2010.
doi:10.1109/TSP.2009.2039815

9. Ding, , L., , G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim and C. R. Giardina, "A robust digital baseband predistorter constructed using memory polynomials," IEEE Trans. Commun., , Vol. 52, No. 1, 159-165, , 2004.
doi:10.1109/TCOMM.2003.822188

10. Hammi, , O., , M. Younes, and A. Kwan, "Performance-driven dimension estimation of memory polynomial behavioral models for wireless transmitters and power amplifiers," Progress In Electromagnetics Research C,, Vol. 12, , 173-189, 2010.
doi:10.2528/PIERC10012611

11. Hammi, , O., , F. M. Ghannouchi, and B. Vassilakis, "A compact envelope-memory polynomial for RF transmitters modeling with application to baseband and RF-digital predistortion," IEEE Microw. Wireless Compon. Lett.,, Vol. 18, No. 5, 359-361, 2008.
doi:10.1109/LMWC.2008.922132

12. Hammi, , O., , M. Younes, and F. M. Ghannouchi, , "Metrics and methods for benchmarking of RF transmitter behavioral models with application to the development of a hybrid memory polynomial model," IEEE Trans. Broadcast., , Vol. 56, No. 3, 350- 357, 2010.
doi:10.1109/TBC.2010.2052408

13. Morgan, , D. R., Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers ," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, 2006.
doi:10.1109/TSP.2006.879264

14. Landin, , P., , M. Isaksson, and P. Handel, "Comparison of evaluation criteria for power amplifier behavioral modeling," Proc. IEEE MTT-S Int. Microw. Symp., 1441-1444, 2008.

15. Isaksson, , M., , D. Wisell, and D. RÄonnow, , "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech.,, Vol. 54, No. 1, 348-359. , 2006.
doi:10.1109/TMTT.2005.860500

16. Guan, , L. and A. Zhu, "Simplified dynamic deviation reduction-based Volterra model for Doherty power amplifiers," Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC-2011, 1-4, 2011.
doi:10.1109/INMMIC.2011.5773325

17. Younes, , M. , O. Hammi, and , "An accurate complexity-reduced PLUME" model for behavioral modeling and digital predistortion of RF power amplifiers," IEEE Trans. Ind. Electron.,, Vol. 58, No. 4, 1397-1405, 2011.
doi:10.1109/TIE.2010.2049717