Vol. 29
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-05-25
Decoupled Unitary ESPRIT Algorithm for 2-D DOA Estimation
By
Progress In Electromagnetics Research C, Vol. 29, 219-234, 2012
Abstract
In this paper, a new decoupled Unitary ESPRIT algorithm for two-dimensional (2-D) direction-of-arrival (DOA) estimation is presented. By exploiting the centro-symmetric array configurations of two parallel uniform linear arrays (TP-ULAs) and utilizing the via rotational invariance techniques, the proposed algorithm has advantages as listed below. First, the algorithm enables decoupling the estimation problem into a two-step estimation problem and obtains the automatically matched 2-D DOAs. Second, employing the elements of the array fully, the algorithm can estimate 2-D DOAs up to 2(M−1), where 2M is the sensor number of the array. Besides, the computational complexity of the proposed algorithm is lower than other representative 2-D DOA estimation methods. Simulation results are presented to show the effectiveness of the proposed method.
Citation
Jiacai Jiang Lu Gan , "Decoupled Unitary ESPRIT Algorithm for 2-D DOA Estimation," Progress In Electromagnetics Research C, Vol. 29, 219-234, 2012.
doi:10.2528/PIERC12040511
http://www.jpier.org/PIERC/pier.php?paper=12040511
References

1. Chan, , A. Y. J. , J. Litva, and , "MUSIC and maximum likelihood techniques on two-dimensional DOA estimation with uniform circular array," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 142, No. 3, 105-114, 1995.
doi:10.1049/ip-rsn:19951756

2. Kedia, , V. S. and B. Chandna, "A new algorithm for 2-D DOA estimation," Signal Processing, Vol. 60, No. 3, 325-332, 1997.
doi:10.1016/S0165-1684(97)00082-0

3. Van der Veen, , A. J., , P. B. Ober, and E. F. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEE Transactions on Signal Processing, Vol. 40, No. 7, 1828-1832, 1992.
doi:10.1109/78.143456

4. Yin, , Q. Y., , R. W. Newcomb, and L. H. Zou, "Estimating 2-D angles of arrival via two parallel linear arrays," 1989 International Conference on Acoustics, Speech, and Signal Processing, ICASSP-89, Vol. 4, 2803 -2806, 1989.

5. Yin, , Q.-Y., et al., , "Relation between the DOA matrix method and the ESPRIT method," IEEE International Symposium on Circuits and Systems,, Vol. 2, 1561-1564, 1990.
doi:10.1109/ISCAS.1990.112432

6. Nehorai, , A. , E. Paldi, and , "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, Vol. 42, No. 2, 376-398, 1994.
doi:10.1109/78.275610

7. See, , C. M. S. , A. B. Gershman, and , "Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays IEEE Transactions on Signal Processing,", Vol. 52, No. 2, 329-338, 2004.
doi:10.1109/TSP.2003.821101

8. Wu, , Y., G. Liao, and H. C. So, , "A fast algorithm for 2-D direction-of-arrival estimation," Signal processing, Vol. 83, No. 8, 1827-1831, 2003.
doi:10.1016/S0165-1684(03)00118-X

9. Xia, T., , et al., "Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays," IEEE Transactions onAntennas and Propagation, Vol. 55, No. 9, 2627-2632, 2007.
doi:10.1109/TAP.2007.904143

10. Zoltowski, , M. D., M. Haardt, and C. P. Mathews, "Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT," IEEE Transactions on Signal Processing, Vol. 44, No. 2, 316-328, 1996.
doi:10.1109/78.485927

11. Lee, , A., , "Centrohermitian and skew-centrohermitian matrices," Linear Algebra and Its Applications, Vol. 29, 205-210, 1980.
doi:10.1016/0024-3795(80)90241-4

12. Haardt, , M., J. A. Nossek, and , "Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden," IEEE Transactions on Signal Processing, Vol. 43, No. 5, 1232-1242, , 1995.
doi:10.1109/78.382406

13. Golub, , G. H. , C. F. Van Loan, and , Matrix Computations, , Johns Hopkins University Press, 1996.