Vol. 34
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-24
A Wideband Quadrature Power Divider/Combiner and Its Application to an Improved Balanced Amplifier
By
Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013
Abstract
In this paper a novel broadband quadrature power divider and its robust design method are presented. The QPD consists of a two-section power divider in combination with a 90-degree differential phase shifter. The two-section power divider is calculated to provide equal power split, high output port isolation, and good return loss at all three ports. The differential phase shifter consists of a composed right/left handed transmission line and pure-right handed transmission line named CRLHu-TL and PRHd-TL, respectively. The CRLHu-TL is divided into two parts; one of them consists of a pure-left handed section whose parasitic pad effects are represented by means of a pure right handed section named PRHp. On the other hand, the PRHd-TL is composed by a microstrip transmission line of characteristic impedance 50Ω and electrical length 50° and two sections equivalents to PRHp. The proposed circuit is applied to develop a broadband balanced amplifier with measured fractional bandwidth (FBW) of 124.4% at the center frequency of 2 GHz.
Citation
Jose Luis Olvera Cervantes Alonso Corona-Chavez Ricardo Arturo Chavez-Perez Humberto Lobato-Morales Jorge Rodrigo Ortega Solis José-Luis Medina-Monroy , "A Wideband Quadrature Power Divider/Combiner and Its Application to an Improved Balanced Amplifier," Progress In Electromagnetics Research C, Vol. 34, 29-39, 2013.
doi:10.2528/PIERC12061310
http://www.jpier.org/PIERC/pier.php?paper=12061310
References

1. Lin, I.-H., M. De Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

2. Cohn, M., J. E. Degenford, and B. A. Newman, "Harmonic mixing with an antiparallel diode pair," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 667-673, 2004.

3. Okabe, H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 798-804, 2004.
doi:10.1109/TMTT.2004.823541

4. Horii, Y., C. Caloz, and T. Itoh, "Super-compact multi-layered left-handed transmission line and diplexer application," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 4, 1527-1534, 2005.
doi:10.1109/TMTT.2005.845189

5. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

6. Caloz, C. and T. Itoh, "A novel mixed conventional microstrip and composite right/left-handed backward-wave directional coupler with broadband and tight coupling characteristics," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 31-33, 2004.
doi:10.1109/LMWC.2003.821506

7. Sanada, A., C. Caloz, and T. Itoh, "Zeroth-order resonance in composite right/lefthanded transmission line resonators," Asia-Pacific Microwave Conference, 1588-1592, Seoul, Korea, Nov. 2003.

8. Antoniades, M.-A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas and Wireless Propagation Lett., Vol. 4, 209-212, 2005.
doi:10.1109/LAWP.2005.851005

9. Lee, C.-J., K. M. K. H. Leong, and T. Itoh, "Broadband quadrature hybrid design using metamaterial transmission line and its application in the broadband continuous phase shifter," IEEE/MTT-S International Microwave Symposium, 1745-1748, Jun. 2007.
doi:10.1109/MWSYM.2007.380066

10. Tseng, C.-H. and C.-L. Chang, "A broadband quadrature power splitter using metamaterial transmission line," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 1, 25-27, 2008.
doi:10.1109/LMWC.2007.911981

11. Seymour, B. C., "A class of broadband three-port TEM-mode hybrids," IEEE Trans. Microwave Theory Tech., Vol. 16, No. 2, 110-1106, 1968.

12. Itoh, T. and C. Caloz, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 17, John Wiley & Sons, 2005.

13. Gonzalez, G., Microwave Transistor Amplifiers: Analysis and Design, 2nd Edition, 330, Prentice Hall, 1997.

14. Tseng, C.-H. and C.-L. Chang, "Improvement of return loss bandwidth of balanced amplifier using metamaterial-based quadrature power splitters," IEEE Microwave and Wireless Components Letters, Vol. 43, No. 4, 269-271, 2008.
doi:10.1109/LMWC.2008.918914

15. Gillick, M., I. D. Robertson, and J. S. Joshi, "Coplanar waveguide two-stage balanced MMIC amplifier using impedance-transforming lumped-distributed branchline couplers," Proc. Inst. Elect. Eng., Vol. 141, 241-245, 1994.

16. Banba, S. and H. Ogawa, "Small-sized MMIC amplifiers using thin dielectric layers," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 3, 485-492, 1995.
doi:10.1109/22.372090

17. Akkaraekthalin, P., S. Jongjitaree, and V. Vivek, "Coplanar waveguide balanced amplifier using bipolar junction transistors and backed ground-plane hybrids," Proc. IEEE Region 10 Int. Conf. (TENCON), 732-735, 2001.

18. Nelson, B. L., D. K. Umemoto, C. B. Perry, R. Dixit, B. R. Allen, M. E. Kim, and A. K. Oki, "High-linearity, low dc power monolithic GaAs HBT broadband amplifiers to 11 GHz," IEEE Microw. Millimeter-wave Monolit. Circuits Symp. Dig., 15-18, 1990.
doi:10.1109/MCS.1990.110928

19. Kobayashi, K. W., M. Nishimoto, L. T. Tran, H.Wang, J. Cowles, T. R. Block, J. Elliott, B. Allen, A. K. Oki, and D. C. Streit, "A 44 GHz InP-based HBT double-balanced amplifier with novel current re-use biasing ," IEEE RFIC Symp. Dig., 267-270, 1998.

20. Seo, S., D. Pavlidis, and J.-S. Moon, "A wideband balanced AlGaN/GaN HEMT MMIC low noise amplifier for transceiver front-ends," Eur. Gallium Arsenide Compound Semicond. Appl. (EGAAS) Symp. Dig., 225-228, 2005.

21. Engelbrecht, R. S. and K. Kurokawa, "A wide-band low noise L-band balanced transistor amplifier," Proc. IEEE, Vol. 53, No. 3, 237-248, 1965.
doi:10.1109/PROC.1965.3681

22. Imaoka, T., T., S. Banba, A. Minakawa, and N. Imai, "Millimeter-wave wide-band amplifiers using multilayer MMIC technology," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 95-101, 1997.
doi:10.1109/22.552037