Vol. 32

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-09-05

Wideband Microwave Crossover Using Double Vertical Microstrip-CPW Interconnect

By Yifan Wang, Amin M. Abbosh, and Bassem Henin
Progress In Electromagnetics Research C, Vol. 32, 109-122, 2012
doi:10.2528/PIERC12071903

Abstract

The paper presents the design of a novel ultra-wideband microwave crossover for the use in microstrip circuits. The proposed structure includes a double microstrip-coplanar waveguide (CPW) vertical interconnect in single-layer substrate technology which allows an inclusion of a finite-width coplanar waveguide (CPW) on the top side of the substrate to achieve the required cross-link. The presented design is verified using the full-wave electromagnetic simulator Ansoft HFSS v.13 and experimental tests. The obtained experimental results show that in the frequency band of 3.2-11 GHz, the crossover has an isolation of 20 dB accompanied by insertion losses of no more than 1.5 dB.

Citation


Yifan Wang, Amin M. Abbosh, and Bassem Henin, "Wideband Microwave Crossover Using Double Vertical Microstrip-CPW Interconnect," Progress In Electromagnetics Research C, Vol. 32, 109-122, 2012.
doi:10.2528/PIERC12071903
http://www.jpier.org/PIERC/pier.php?paper=12071903

References


    1. Chiu, J.-C., J.-M. Lin, M.-P. Houng, and Y.-H. Wang, "A PCB compatible 3-dB coupler using microstrip-to-CPW via-hole transitions," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 369-371, Jun. 2006.
    doi:10.1109/LMWC.2006.875592

    2. Horng, T., "A rigorous study of microstrip crossovers and their possible improvements," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1802-1806, Sep. 1994.
    doi:10.1109/22.310591

    3. Martoglio, L., E. Richalot, G. Lissorgues, and O. Picon, "A wideband 3D-transition between coplanar and inverted microstrip on silicon to characterize a line in MEMS technology," Microwave and Optical Tech. Lett., Vol. 46, No. 4, 378-381, 2005.
    doi:10.1002/mop.20992

    4. Burke, J. and R. Jackson, "Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 3, 519-525, Mar. 1989.
    doi:10.1109/22.21623

    5. Liu, W., Z. Zhang, Z. Feng, and M. F. Iskander, "A Compact wideband microstrip crossover," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 254-256, May 2012.
    doi:10.1109/LMWC.2012.2190270

    6. Kusiek, A., W. Marynowski, and J. Mazur, "Design of a broadband microstrip crossover for ultra-wideband applications," Microw. Opt. Technol. Lett., Vol. 52, No. 5, 1100-1104, 2010.
    doi:10.1002/mop.25146

    7. Chiou, Y., J. Kuo, and H. Lee, "Design of compact symmetric four-port crossover junction," IEEE Microwave and Wireless Components Letters, Vol. 19, 545-447, 2009.
    doi:10.1109/LMWC.2009.2027054

    8. Yao, J., C. Lee, and S. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. Microw. Theory Tech., Vol. 59, 87-92, 2011.
    doi:10.1109/TMTT.2010.2090695

    9. Wong, F. and K. Cheng, "Octave-wide matched symmetrical, reciprocal, design for dual-band applications," IEEE Trans. Microw. Theory Tech., Vol. 59, 568-573, 2011.
    doi:10.1109/TMTT.2010.2098883

    10. De Ronde, F. C., "Octave-wide matched symmetrical, reciprocal, 4- and 5 ports," 1982 IEEE MTT-S International Microwave Symposium Digest, 521-523, Jun. 15-17, 1982.

    11. Chen, Y. and S. Yeo, "A symmetrical four-port microstrip coupler for crossover application ," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 11, 2434-2438, 2007.
    doi:10.1109/TMTT.2007.908675

    12. Abbosh, A., "Planar wideband crossover with distortionless response using dual-mode microstrip patch," Microw. Opt. Technol. Lett., Vol. 54, No. 9, 2077-2079, 2012.
    doi:10.1002/mop.27028

    13. U-yen, K., E. J. Wollack, S. H. Moseley, T. R. Stevenson, W.-T. Hsieh, and N. T. Cao, "Via-less microwave crossover using microstrip-CPW transitions in slotline propagation mode I," 2009 IEEE MTT-S International Microwave Symposium Digest, 1029-1032, 2009.
    doi:10.1109/MWSYM.2009.5165875

    14. Lin, T.-H., "Via-free broadband microstrip to CPW transition," Electronics Letters, Vol. 37, No. 15, 960-961, Jul. 19, 2001.
    doi:10.1049/el:20010674

    15. Girard, T., R. Staraj, E. Cambiaggio, and F. Muller, "Microstrip-CPW transitions for antenna array applications," Microw. Opt. Technol. Lett., Vol. 23, No. 3, 131-133, 1999.
    doi:10.1002/(SICI)1098-2760(19991105)23:3<131::AID-MOP1>3.0.CO;2-9

    16. Jin, H., R. Vahldieck, J. Huang, and P. Russer, "Rigorous analysis of mixed transmission line interconnects using the frequency-domain TLM method," EEE Trans. Microw. Theory Tech., Vol. 41, 2248-2255, 1993.

    17. Abbosh, A., "Wideband planar crossover using two-port and four-port microstrip to slotline transitions," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 2012.
    doi:10.1109/LMWC.2012.2209632

    18. Abbosh, A. M., "Broadband fixed phase shifters," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 22-24, 2011.
    doi:10.1109/LMWC.2010.2079320

    19. Abbosh, A. M. and M. E. Bialkowski, "Design of compact directional couplers for UWB applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 189-194, Feb. 2007.
    doi:10.1109/TMTT.2006.889150

    20. Abbosh, A. M. and M. E. Bialkowski, "Design of ultra wideband 3DB quadrature microstrip/slot coupler," Microw. Opt. Technol. Lett., Vol. 49, No. 9, 2101-2103, 2007.
    doi:10.1002/mop.22674

    21. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Artech House, 1996.