Vol. 32
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-09-13
First Experimental Solution for Channel Noise Sensibility in Digital Chaotic Communications
By
Progress In Electromagnetics Research C, Vol. 32, 181-196, 2012
Abstract
An interesting and original solution to the high channel noise sensibility problem of digital chaotic communications is proposed. The solution idea consist of avoiding disruption of the slave/receiver dynamics by injecting the driving signal. To realize experimentally this pertinent idea, an FPGA-based hardware architecture is developed, firstly to trigger the generation of the slave/receiver chaotic dynamics at each received data detection, and secondly to synchronize the driving signal with the slave generated chaotic signal for the demodulation operation. We have tested and validated the proposed solution through experimental realization of a wireless hyperchaotic communication system based on ZigBee communication protocol. Real-time results of experimental wireless communication tests are presented. The obtained results show the effectiveness and the robustness of the proposed solution against real channel noise in digital chaotic communications.
Citation
Said Sadoudi Camel Tanougast Mohamed Salah Azzaz , "First Experimental Solution for Channel Noise Sensibility in Digital Chaotic Communications," Progress In Electromagnetics Research C, Vol. 32, 181-196, 2012.
doi:10.2528/PIERC12080906
http://www.jpier.org/PIERC/pier.php?paper=12080906
References

1. Pecora, L. M. and T. L. Carroll, "Synchronization in chaotic systems," Phys. Lett. A, Vol. 64, 821-824, 1990.

2. Cuomo, K. M., "Circuit implementation of synchronized chaos with applications to communications," Phys. Rev. Lett., Vol. 71, No. 1, 65-68, 1993.

3. Parlitz, U., "Transmission of digital signals by chaotic synchro-nization," Int. J. Bifurcation and Chaos, Vol. 2, 973-997, 1992.

4. Dedieu, H., "Chaos shift keying: Modulation and demodulation of a chaotic carrier using self-synchronizing," IEEE Trans. Circ. Syst.-II., Vol. 40, No. 1, 634-641, 1993.

5. Yang, T., "Secure communication via chaotic parameter modulation," IEEE Trans. Circ. Syst.-I, Vol. 48, 817-819, 1996.

6. Milanovic, V., "Improved masking algorithm for chaotic communications systems," Elec. Lett., Vol. 32, 11-12, 1996.

7. Yang, T., "A survey of chaotic secure communication systems," Int. J. Computational Cognition, Vol. 2, 81-130, 2004.

8. Minai, A. A., "Communicating with noise: How chaos and noise combine to generate secure encryption keys," Chaos, Vol. 8, 621-627, 1998.

9. Wang, X., "A robust demodulation application communication using chaotic signals," Int. J. Bifurcation and Chaos, Vol. 13, 227-231, 2003.

10. Murali, K., "Heterogeneous chaotic systems based cryptography," Phys. Lett. A, Vol. 272, 184-192, 2000.

11. Zhang, Y.-Q. and X.-Y. Wang, "A parameter modulation chaotic secure communication scheme with channel noises," Chin. Phys. Lett., Vol. 28, No. 2, 02050, 2011.

12. Eisencraft, M. and A. M. Batista, "Discrete-time chaotic systems synchronization performance under additive noise," Signal Processing,, Vol. 91, 2127-2131, 2011.

13. Senthilkumar, D. V. and J. Kurths, "Characteristics and synchronization of time-delay systems driven by a common noise," Eur. Phys. J. Special Topics, Vol. 187, 87-93, 2010.

14. Koseska, A., E. Volkov, and J. Kurths, "Parameter mismatches and oscillation death in coupled oscillators," Chaos, Vol. 20, 023132, 2010.

15. Dimassi, H., A. Loria, and S. Belghith, "A new secured transmission scheme based on chaotic synchronization via smooth adaptive unknown-input observers," Comm. in Nonl. Sci. and Num. Simul., Vol. 17, No. 9, 3727-3739, 2012.

16. Chen, M., "A new private communication scheme based on the idea of fault detection and identification," Phys. Lett. A, Vol. 531, 177-183, 2006.

17. Li, S., "Breaking a chaos-noise-based secure communication scheme," Chaos, Vol. 15, 013703, 2005.

18. Digi International Inc., Xbee/XBee-PRO ZB RF Modules, 2010.

19. Barbosa, R., "Dydnamics of a hyperchaotic Lorenz systems," Int. J. Bifurcation and Chaos, Vol. 17, 4285-4294, 2007.

20. Sadoudi, S., "Embedded Genesio-Tesi chaotic generator for cipher," Proc. 7th Int. Symp. Comm. Syst., Networks Dig. Signal Proc., 234-238, 2010.

21. Sadoudi, S., "An FPGA real-time implementation of the Chen's chaotic system for chaotic communications ," Int. J. Nonlinear Science, Vol. 7, 467-474, 2009.

22. Kocarev, L., "Experimental demonstration of secure communications via chaotic synchronization," Int. J. Bifurcation and Chaos, Vol. 2, 709-713, 1992.

23. Xilinx, , "Xilinx University program Virtex-II Pro development system," Xilinx, UG069, Vol. 1.1, 2008.

24. Centeno, A. and N. Alford, "Measurment of ZigBee wireless communications in mode-stirred and mode-tuned reverberation chamber," Progress In Electromagnetics Research M, Vol. 18, 171-178, 2011.