Vol. 34
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-24
Analysis of Band-Notched UWB Printed Monopole Antennas Using a Novel Segmented Structure
By
Progress In Electromagnetics Research C, Vol. 34, 13-27, 2013
Abstract
A novel segmented structure is proposed as a versatile approach to reject certain band of UWB printed monopole antennas (PMAs). To validate the effectiveness of the proposed structure, three UWB PMAs with typical circular, beveled rectangular and regular hexagonal patch shapes are selected and investigated. Good agreement between simulation and measurement shows that, by segmenting every selected patch into three parts, intensive coupling occurs between the center patch and the side patches at the target frequency, and consequently the band-notched function in IEEE 802.11a WLAN band is obtained. The measured radiation properties of these antennas are also presented and discussed. Moreover, a pair of equivalent lumped circuit models is presented, which provides a physical correlation between the notch band behaviors and the control parameters. The input impedance of the antennas calculated by the equivalent circuit models agree very well with the HFSS simulated results.
Citation
Ke Zhang Tao Wang Lianglun Cheng , "Analysis of Band-Notched UWB Printed Monopole Antennas Using a Novel Segmented Structure," Progress In Electromagnetics Research C, Vol. 34, 13-27, 2013.
doi:10.2528/PIERC12082401
http://www.jpier.org/PIERC/pier.php?paper=12082401
References

1. Lin, C. C. and H. R. Chuang, "A 3-12 GHz UWB planar triangular monopole antenna with ridged ground-plane," Progress In Electromagnetics Research, Vol. 83, 307-321, 2008.
doi:10.2528/PIER08070502

2. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-fed two-step tapered monopole antenna for UWB and WLAN," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

3. Liang, J. X., C. C. Chiau, X. D. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. on Ntennas and Propag., Vol. 53, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598

4. Chen, Z. N., T. S. P. See, and X. M. Qing, "Small printed ultrawideband antenna with reduced ground plane effect," IEEE Trans. on Antennas and Propag., Vol. 55, 383-388, 2007.
doi:10.1109/TAP.2006.889823

5. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-L notch filter for the 5 GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-3, 2010.
doi:10.2528/PIER10040507

6. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics," IEEE Trans. on Antennas and Propag., Vol. 56, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368

7. Li, C.-M. and L.-H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched band-widths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

8. Qu, S., J. Li, and Q. Xue, "A band-notched ultrawideband printed monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 495-498, 2006.
doi:10.1109/LAWP.2006.886303

9. Sim, C.-Y.-D., W.-T. Chung, and C.-H. Lee, "Planar UWB antenna with 5 GHz band rejection switching function at ground plane," Progress In Electromagnetics Research, Vol. 106, 321-333, 2010.
doi:10.2528/PIER10060208

10. Jiang, J., Y. Song, Z. Yan, X. Zhang, and W. Wu, "Band-notched UWB printed antenna with an inverted-L-slotted ground," Microwave. Opt. Technol. Lett., Vol. 51, 260-263, 2009.
doi:10.1002/mop.24003

11. Kelly, J. R., J. R., P. S. Hall, and P. Gardner, "Band-notched UWB antenna incorporating a microstrip open-loop resonator," IEEE Trans. on Antennas and Propag., Vol. 59, 3045-3048, 2011.
doi:10.1109/TAP.2011.2152326

12. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Trans. on Antennas and Propag., Vol. 58, 27-34, 2010.
doi:10.1109/TAP.2009.2036279

13. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar band-notched antennas using parasitic elements," IEEE Trans. on Antennas and Propag., Vol. 57, 796-799, 2009.
doi:10.1109/TAP.2009.2013449

14. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. on Microwave Theory and Tech., Vol. 59, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090

15. Lin, C. C., P. Jin, and W. Ziolkowski, "Single, dual and triband-notched ultrawideband (UWB) antennas using Capacitively loaded loop (CLL) resonators," IEEE Trans. on Antennas and Propag., Vol. 60, 102-109, 2012.
doi:10.1109/TAP.2011.2167947

16. Wang, S. B. T., A. M. Niknejad, and W. Brodersen, "Circuit modeling methodology for UWB omnidirectional small antennas," IEEE J. Select. Areas Commun., Vol. 24, 871-877, 2006.
doi:10.1109/JSAC.2005.863873

17. Zhang, K., Y. X. Li, and Y. L. Long, "Band-notched UWB printed monopole antenna with a novel segmented circular patch," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1209-1212, 2010.
doi:10.1109/LAWP.2010.2099095

18. Collin, R. E., Foundation for Microwave Engineering, 2nd Edition, McGraw-Hill, New York, 1993.

19. Ramo, S., J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Vol. 2, 1871-1874, IEEE APS Int. Symp. Dig., Monterey, CA, Jun. 2004.