Vol. 34
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-25
A Three-Band T-Junction Power Divider Based on Artificial Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 34, 41-52, 2013
Abstract
Based on the Composite Right/Left-Handed (CRLH) Transmission Line (TL) approach this paper presents a 3-band T-Junction power divider. The proposed design strategy uses a stub-loaded TL for the right-handed portion of the line; this way, with respect to a conventional CRLH line, one more degree of freedom is available. Experimental and numerical results referring to a prototype using surface-mount capacitors and inductors are reported and discussed. It is demonstrated that the artificial transmission line (ATL) here presented is an optimum candidate for designing high-added value microwave devices. Furthermore, based on the use of metal-insulator-metal capacitors and short circuited stubs, a monolithic implementation is also proposed.
Citation
Giuseppina Monti Rosa De Paolis Luciano Tarricone , "A Three-Band T-Junction Power Divider Based on Artificial Transmission Lines," Progress In Electromagnetics Research C, Vol. 34, 41-52, 2013.
doi:10.2528/PIERC12091707
http://www.jpier.org/PIERC/pier.php?paper=12091707
References

1. Caloz, C. and T. Itoh, "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line," IEEE AP-S Symp., 412-415, Jun. 2002.

2. Lin, I-H., M. de Vincentis, C. Caloz, and T. Itoh, "Arbitrary dual-band components using composite right/left-handed transmission lines," IEEE Trans. on Microwave Theory Tech., Vol. 52, 1142-1149, 2004.
doi:10.1109/TMTT.2004.825747

3. Monti, G., R. de Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on MEMS switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109

4. Lai, A., K. M. K. H. Leong, and T. Itoh, "Composite right/left-handed metamaterial antennas," Antenna Tech. Small Antennas and Novel Metamaterials, 404-407, 2006.
doi:10.1109/IWAT.2006.1609061

5. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. on Microwave Theory Tech., Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

6. Catarinucci, L., G. Monti, and L. Tarricone, "A parallel-grid-enabled variable-mesh FDTD approach for the analysis of slabs of double-negative metamaterials," IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 782-785, 2005.

7. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184

8. Monti, G. and L. Tarricone, "On the propagation of a Gaussian pulse in a double-negative slab," Proc. of 35th European Microwave Conference, 1419-1422, 2005.

9. Ziolkowski, R. W., "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Exp., Vol. 11, No. 7, 662-681, Apr. 2003.
doi:10.1364/OE.11.000662

10. Monti, G. and L. Tarricone, "A novel theoretical formulation for he analysis of the propagation of finite-bandwidth signals in a double-negative slab," Microwave and Optical Technology Letters, Vol. 47, No. 5, 434-439, 2005.
doi:10.1002/mop.21193

11. Monti, G. and L. Tarricone, "Gaussian pulse expansion of modulated signals in double-negative slab," IEEE Trans. on Microwave Theory Tech., Vol. 54, No. 6, 2755-2761, 2006.
doi:10.1109/TMTT.2006.874879

12. Saenz, E., A. Cantora, I. Ederra, R. Gonzalo, and P. de Maagt, "A metamaterial T-junction power divider," IEEE Microwave and Wireless Components Lett., Vol. 17, No. 3, 172-174, Mar. 2007.
doi:10.1109/LMWC.2006.890447

13. Monti, G. and L. Tarricone, "Dispersion analysis of a planar negative group velocity-transmission line," Proceedings of the 37th European Microwave Conference, EUMC, 1644-1647, 2007.

14. Lin, I-H., C. Caloz, and T. Itoh, "A branch-line coupler with two arbitrary operating frequencies using left-handed transmission lines," IEEE MTT-S Dig., Vol. 1, 325-328, 2003.

15. Monti, G. and L. Tarricone, "Dual-band artificial transmission lines branch-line coupler," Int. Journal of RF and Microwave Computer-Aided Engineering Wiley, Vol. 18, No. 1, 53-62, Sep. 2007.
doi:10.1002/mmce.20266

16. Monti, G. and L. Tarricone, "Reduced-size broadband ATL-CRLH rat-race coupler," Proc. 36th European Microwave Conf., 125-128, 2006.

17. Monti, G. and L. Tarricone, "Compact broadband monolithic 3-dB coupler by using artificial transmission lines," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2662-2667, 2008.
doi:10.1002/mop.23735

18. Eccleston, K. W., L. Fan, and S. H. M.Ong, "Compact planar microstripline branch-line and rat-race couplers," IEEE Trans. on Microwave Theory Tech., Vol. 51, No. 10, 2119-2125, 2003.
doi:10.1109/TMTT.2003.817442

19. Corchia, L., G. Monti, and L. Tarricone, "MEMS-reconfigurable bandpass filter," Microwave and Optical Technology Letters, Vol. 50, No. 8, 2096-2099, 2008.
doi:10.1002/mop.23570