Vol. 36

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-11

Experimental Study of 2-D Electrochemicallydeposited Random Fractal Monopole Antennas

By Christophe Dumond, Mokhtar Khelloufi, and Levi Allam
Progress In Electromagnetics Research C, Vol. 36, 119-130, 2013
doi:10.2528/PIERC12100907

Abstract

Two 2-D natural fractal monopoles generated by electro-deposition are characterized in term of measured return loss. Depending on their different shapes, previously reported multi-band behaviour and new ultra-wideband (UWB) characteristics are obtained. Finally, sufficient efficiencies are measured for both antennas proving their possible use as radiating element.

Citation


Christophe Dumond, Mokhtar Khelloufi, and Levi Allam, "Experimental Study of 2-D Electrochemicallydeposited Random Fractal Monopole Antennas," Progress In Electromagnetics Research C, Vol. 36, 119-130, 2013.
doi:10.2528/PIERC12100907
http://www.jpier.org/PIERC/pier.php?paper=12100907

References


    1. Puente, C., J. Romeu, R. Pous, and A. Cardama, "On the behaviour of the Sierpinski multi-band fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 4, 517-524, Apr. 1998.
    doi:10.1109/8.664115

    2. Xu, L. and M. Y. W. Chia, "Multi-band characteristics of two fractal antennas," Microwave and Optical Technology Letters, Vol. 23, No. 4, 242-245, Nov. 1999.

    3. Werner, D. H., A. R. Bretones, and B. R. Long, "Radiation characteristics of thin-wire ternary fractal trees," IEE Electron. Lett., Vol. 35, No. 8, 609-610, Apr. 1999.
    doi:10.1049/el:19990478

    4. Puente, C., J. Romeu, and A. Cardama, "The Koch monopole: A small fractal antenna," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1773-1781, Nov. 2000.

    5. Anguera, J., C. Puente, C. Borja, and J. Soler, "Fractal-shaped antennas: A review," Wiley Encyclopedia of RF and Microwave Engineering, Vol. 2, 1620-1635, 2005.

    6. Anguera, J., E. Martinez, C. Puente, C. Borja, and J. Soler, "Broadband dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 66-73, Jan. 2004.
    doi:10.1109/TAP.2003.822433

    7. Puente, C., J. Claret, F. Sagues, J. Romeu, M. Q. Lopez-Salvans, and R. Pous, "Multi-band properties of a fractal tree antenna generated by electrochemical deposition," EE Electron. Lett., Vol. 32, No. 25, 2298-2299, Dec. 1996.
    doi:10.1049/el:19961579

    8. Rmili, H., O. Mrabet, J. M. Floch, and J. L. Miane, "Study of an electrochemically-deposed 3D-fractal tree-monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1045-1050, Apr. 2007.
    doi:10.1109/TAP.2007.893392

    9. Allam, L., T. Devers, and V. Fleury, "Capteurs de molecules reducrices,", brevet CNRS/Universitie d'Orleans, FR00/10147, 2000.

    10. Dumond, C., M. Khelloufi, and L. Allam, "Multiband and ultrawideband properties of 2-D electrochemically-deposited random fractal monopole antennas," PIERS Proceedings , 850-851, Marrakesh, Morocco, Mar. 20-23, 2011.

    11. Trigueros, P. P., J. Claret, F. Mas, and F. Sagues, "Pattern morphologies in zinc electro-deposition," J. Electroanal. Chem., Vol. 312, 219-235, 1991.

    12. Fleury, V., W. A. Watters, L. Allam, and T. Devers, "Rapid galvanic electroplating of insulators," Nature, Vol. 416, 716-719, 2002.
    doi:10.1038/416716a

    13. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. van Roy, "Metallized foams for fractal-shaped microstrip antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, Dec. 2008.
    doi:10.1109/MAP.2008.4772718

    14. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, K. Sayegrih, and P. van Roy, "Metallized foams for antenna design: Application to fractal-shaped Sierpinski-Carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
    doi:10.2528/PIER10032003

    15., , Fractalyse 2.3, Laboratoire TheMa (CNRS --- Universitie de Franche-Comte), http://www.fractalyse.org.

    16. Image JTM, Java image processing program inspired by NIH Image, , http://rsbweb.nih.gov/ij/.

    17. Anguera, J., C. Puente, E. Martinez, E. Rozan, "The fractal Hilbert monopole: A two-dimensional wire," Microwave and Optical Technology Letters, Vol. 36, No. 2, 102-104, Jan. 2003.
    doi:10.1002/mop.10687

    18. Abosh, A. M. and M. E. Bialkowski, "Design of ultra-wideband planar monopole antennas of circular and elliptical shape," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 17-23, Jan. 2008.
    doi:10.1109/TAP.2007.912946

    19. Wheeler, H. A., The radian-sphere around a small antenna, 1325-1331, Proc. IRE, Aug. 1959.

    20. McKinzie, III and W. E., "A modified Wheeler cap method for measuring antenna efficiency," IEEE International Symposium on Antennas and Propagation,, Vol. 1, 542-545, 1997.

    21. Austin, B. A., "Resonant mode limitations with the Wheeler method of radiation efficiency measurement," IEE Colloquium on Advances in the Direct Measurement of Antenna Radiation Characteristics in Indoor Environments, 7/1-7/4, 1989.