Vol. 35
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-12-12
Visualization of Water Transport Pathways in Plants Using Diffusion Tensor Imaging
By
Progress In Electromagnetics Research C, Vol. 35, 73-82, 2013
Abstract
Magnetic resonance imaging (MRI) is a well established non-invasive technique to retrieve structural information from plants and fruits. Water transport inside these materials has also been studied with MRI, however, the integrate combination of studying both structure and dynamics has hardly been considered. Here it is shown how the anisotropic nature of water diffusion in channels or vessels inside the plant, combined with plant structural information, can be used to map these vessels in three dimensions. Diffusion Tensor Imaging (DTI), an MR technique initially introduced to study white matter in mammalian brains, is used to track water transport pathways inside Thompson Seedless grapes and celery as an example.
Citation
Marco L. H. Gruwel, Peter Latta, Uta Sboto-Frankenstein, and Patricia Gervai, "Visualization of Water Transport Pathways in Plants Using Diffusion Tensor Imaging," Progress In Electromagnetics Research C, Vol. 35, 73-82, 2013.
doi:10.2528/PIERC12110506
References

1. Koeckenberger, W., C. De Panfilis, D. Santoro, P. Dahiya, and S. Rawsthorne, "High resolution NMR microscopy of plants and fungi," J. Microsc., Vol. 214, No. 2, 182-189, 2004.
doi:10.1111/j.0022-2720.2004.01351.x

2. Scheenen, T., A. Heemskerk, A. De Jager, F. Vergeldt, and H. Van As, "Functional imaging of plants: A nuclear magnetic resonance study of a cucumber plant," Biophys. J., Vol. 82, No. 1, Pt. 1, 481-492, 2002.

3. Scheenen, T. W. J., F. J. Vergeldt, A. M. Heemskerk, and H. Van As, "Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area," Plant Physiol., Vol. 144, No. 2, 1157-1165, 2007.
doi:10.1104/pp.106.089250

4. Borisjuk, L., H. Rolletschek, and T. Neuberger, "Surveying the plant's world by magnetic resonance imaging," Plant J., Vol. 70, No. 1, 129-146, 2012.
doi:10.1111/j.1365-313X.2012.04927.x

5. Jahnke, S., M. I. Menzel, D. Van Dusschoten, G. W. Roeb, J. Buehler, S. Minwuyelet, P. Bluemler, V. M. Temperton, T. Hombach, M. Streun, S. Beer, M. Khodaverdi, K. Ziemons, H. H. Coenen, and U. Schurr, "Combined MRI-PET dissects dynamic changes in plant structures and functions," Plant J., Vol. 59, No. 4, 634-644, 2009.
doi:10.1111/j.1365-313X.2009.03888.x

6. Basser, P. J., J. Mattiello, and D. Le Bihan, "MR diffusion tensor spectroscopy and imaging," Biophys J., Vol. 66, No. 1, 259-267, 1994.
doi:10.1016/S0006-3495(94)80775-1

7. Le Bihan, D., J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, "Diffusion tensor imaging: Concepts and applications," J. Magn. Reson. Imaging, Vol. 13, No. 4, 534-546, 2001.
doi:10.1002/jmri.1076

8. Tournier, J.-D., S. Mori, and A. Leemans, "Diffusion tensor imaging and beyond," Magn. Reson. Med., Vol. 65, No. 6, 1532-1556, 2011.
doi:10.1002/mrm.22924

9. Ciccarelli, O., M. Catani, H. Johansen-Berg, C. Clark, and A. Thompson, "Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments," Lancet Neurol., Vol. 7, No. 8, 715-727, 2008.
doi:10.1016/S1474-4422(08)70163-7

10. Lazar, M., "Mapping brain anatomical connectivity using white matter tractography," NMR Biomed., Vol. 23, No. 7, 821-835, 2010.
doi:10.1002/nbm.1579

11. Gruwel, M. L. H., P. K. Ghosh, P. Latta, and D. S. Jayas, "On the diffusion constant of water in wheat," J. Agric. Food Chem., Vol. 56, No. 1, 59-62, 2008.
doi:10.1021/jf0720537

12. Boujraf, S., R. Luypaert, H. Eisendrath, and M. Osteaux, "Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems," MAGMA, Vol. 13, No. 2, 82-90, 2001.

13. Chatelet, D. S., T. L. Rost, M. A. Matthews, K. A. Shackel, and , "The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development," J. Exp. Bot., Vol. 59, No. 8, 1997-2007, 2008.
doi:10.1093/jxb/ern061

14. Greenspan, M., K. Shackel, and M. A. Matthews, "Developmental changes in the diurnal water budget of the grape berry exposed to water deficits," Plant, Cell Environ., Vol. 17, 811-820, 1994.
doi:10.1111/j.1365-3040.1994.tb00175.x

15. Bondada, B. R., M. A. Matthews, and K. A. Shackel, "Functional xylem in the post-veraison grape berry," J. Exp. Bot., Vol. 56, No. 421, 2949-2957, 2005.
doi:10.1093/jxb/eri291

16. Duva, F. P., M. Cambert, and F. Mariette, "NMR study of tomato pericarp tissue by spin-spin relaxation and water self-diffusion," Appl. Magn. Reson., Vol. 28, 29-40, 2005.
doi:10.1007/BF03166991

17. Andaur, J. E., A. R. Guesalaga, E. E. Agosin, M. W. Guarini, and P. Irarrazaval, "Magnetic resonance imaging for nondestructive analysis of wine grapes," J. Agric. Food Chem., Vol. 52, 165-170, 2004.
doi:10.1021/jf034886c

18. Pope, J. M., D. Jonas, and R. R. Walker, "Applications of NMR micro-imaging to the study of water, lipid, and carbohydrate distribution in grape berries," Protoplasma, Vol. 173, 177-186, 1993.
doi:10.1007/BF01379006

19. Fillard, P., X. Pennec, V. Arsigny, and N. Ayache, "Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics," IEEE Trans. Med. Imaging,, Vol. 26, No. 11, 1472-1482, 2007.
doi:10.1109/TMI.2007.899173

20. Hui, , E. S., M. M. Cheung, K. C. Chan, and E. X. Wu, "B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes," Neuroimage, Vol. 49, 2366-2374, 2010.
doi:10.1016/j.neuroimage.2009.10.022

21. Fillard, P. and N. Toussaint, "DTI processing and analysis with MedINRIA," Proc. Intl. Soc. Mag. Reson. Med., Vol. 19, 4030, 2011.