Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Visualization of Water Transport Pathways in Plants Using Diffusion Tensor Imaging

By Marco L. H. Gruwel, Peter Latta, Uta Sboto-Frankenstein, and Patricia Gervai
Progress In Electromagnetics Research C, Vol. 35, 73-82, 2013


Magnetic resonance imaging (MRI) is a well established non-invasive technique to retrieve structural information from plants and fruits. Water transport inside these materials has also been studied with MRI, however, the integrate combination of studying both structure and dynamics has hardly been considered. Here it is shown how the anisotropic nature of water diffusion in channels or vessels inside the plant, combined with plant structural information, can be used to map these vessels in three dimensions. Diffusion Tensor Imaging (DTI), an MR technique initially introduced to study white matter in mammalian brains, is used to track water transport pathways inside Thompson Seedless grapes and celery as an example.


Marco L. H. Gruwel, Peter Latta, Uta Sboto-Frankenstein, and Patricia Gervai, "Visualization of Water Transport Pathways in Plants Using Diffusion Tensor Imaging," Progress In Electromagnetics Research C, Vol. 35, 73-82, 2013.


    1. Koeckenberger, W., C. De Panfilis, D. Santoro, P. Dahiya, and S. Rawsthorne, "High resolution NMR microscopy of plants and fungi," J. Microsc., Vol. 214, No. 2, 182-189, 2004.

    2. Scheenen, T., A. Heemskerk, A. De Jager, F. Vergeldt, and H. Van As, "Functional imaging of plants: A nuclear magnetic resonance study of a cucumber plant," Biophys. J., Vol. 82, No. 1, Pt. 1, 481-492, 2002.

    3. Scheenen, T. W. J., F. J. Vergeldt, A. M. Heemskerk, and H. Van As, "Intact plant magnetic resonance imaging to study dynamics in long-distance sap flow and flow-conducting surface area," Plant Physiol., Vol. 144, No. 2, 1157-1165, 2007.

    4. Borisjuk, L., H. Rolletschek, and T. Neuberger, "Surveying the plant's world by magnetic resonance imaging," Plant J., Vol. 70, No. 1, 129-146, 2012.

    5. Jahnke, S., M. I. Menzel, D. Van Dusschoten, G. W. Roeb, J. Buehler, S. Minwuyelet, P. Bluemler, V. M. Temperton, T. Hombach, M. Streun, S. Beer, M. Khodaverdi, K. Ziemons, H. H. Coenen, and U. Schurr, "Combined MRI-PET dissects dynamic changes in plant structures and functions," Plant J., Vol. 59, No. 4, 634-644, 2009.

    6. Basser, P. J., J. Mattiello, and D. Le Bihan, "MR diffusion tensor spectroscopy and imaging," Biophys J., Vol. 66, No. 1, 259-267, 1994.

    7. Le Bihan, D., J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, "Diffusion tensor imaging: Concepts and applications," J. Magn. Reson. Imaging, Vol. 13, No. 4, 534-546, 2001.

    8. Tournier, J.-D., S. Mori, and A. Leemans, "Diffusion tensor imaging and beyond," Magn. Reson. Med., Vol. 65, No. 6, 1532-1556, 2011.

    9. Ciccarelli, O., M. Catani, H. Johansen-Berg, C. Clark, and A. Thompson, "Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments," Lancet Neurol., Vol. 7, No. 8, 715-727, 2008.

    10. Lazar, M., "Mapping brain anatomical connectivity using white matter tractography," NMR Biomed., Vol. 23, No. 7, 821-835, 2010.

    11. Gruwel, M. L. H., P. K. Ghosh, P. Latta, and D. S. Jayas, "On the diffusion constant of water in wheat," J. Agric. Food Chem., Vol. 56, No. 1, 59-62, 2008.

    12. Boujraf, S., R. Luypaert, H. Eisendrath, and M. Osteaux, "Echo planar magnetic resonance imaging of anisotropic diffusion in asparagus stems," MAGMA, Vol. 13, No. 2, 82-90, 2001.

    13. Chatelet, D. S., T. L. Rost, M. A. Matthews, K. A. Shackel, and , "The peripheral xylem of grapevine (Vitis vinifera) berries. 2. Anatomy and development," J. Exp. Bot., Vol. 59, No. 8, 1997-2007, 2008.

    14. Greenspan, M., K. Shackel, and M. A. Matthews, "Developmental changes in the diurnal water budget of the grape berry exposed to water deficits," Plant, Cell Environ., Vol. 17, 811-820, 1994.

    15. Bondada, B. R., M. A. Matthews, and K. A. Shackel, "Functional xylem in the post-veraison grape berry," J. Exp. Bot., Vol. 56, No. 421, 2949-2957, 2005.

    16. Duva, F. P., M. Cambert, and F. Mariette, "NMR study of tomato pericarp tissue by spin-spin relaxation and water self-diffusion," Appl. Magn. Reson., Vol. 28, 29-40, 2005.

    17. Andaur, J. E., A. R. Guesalaga, E. E. Agosin, M. W. Guarini, and P. Irarrazaval, "Magnetic resonance imaging for nondestructive analysis of wine grapes," J. Agric. Food Chem., Vol. 52, 165-170, 2004.

    18. Pope, J. M., D. Jonas, and R. R. Walker, "Applications of NMR micro-imaging to the study of water, lipid, and carbohydrate distribution in grape berries," Protoplasma, Vol. 173, 177-186, 1993.

    19. Fillard, P., X. Pennec, V. Arsigny, and N. Ayache, "Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics," IEEE Trans. Med. Imaging,, Vol. 26, No. 11, 1472-1482, 2007.

    20. Hui, , E. S., M. M. Cheung, K. C. Chan, and E. X. Wu, "B-value dependence of DTI quantitation and sensitivity in detecting neural tissue changes," Neuroimage, Vol. 49, 2366-2374, 2010.

    21. Fillard, P. and N. Toussaint, "DTI processing and analysis with MedINRIA," Proc. Intl. Soc. Mag. Reson. Med., Vol. 19, 4030, 2011.