Vol. 35

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Human Body Effects on Inkjet-Printed Flexible RF Interconnections

By Shahed Alam, Hannu P. Sillanpaa, and Riku M. Makinen
Progress In Electromagnetics Research C, Vol. 35, 83-94, 2013


The effect of human body on inkjet-printed flexible single-layer transmission lines in immediate proximity of body is investigated by simulations and measurements up to 9 GHz. A multliine extraction method is used to obtain effective material parameters allowing detailed analysis of body effects. Already at 1 mm distance from the body, the line properties converge toward the free-space values. However, at smaller distances and in direct contact with the body, often required in biosensor applications, there is a significant change in characteristic impedance and increase in losses. The results of the paper can be used to evaluate the body effects at different frequencies and at different small distances from the body.


Shahed Alam, Hannu P. Sillanpaa, and Riku M. Makinen, "Human Body Effects on Inkjet-Printed Flexible RF Interconnections," Progress In Electromagnetics Research C, Vol. 35, 83-94, 2013.


    1. Kellomaki, T., "Effects of the human body on single-layer wearable antennas,", Ph.D. Thesis, Tampere University of Technology, Tampere, 2012.

    2. Sankaralingam, S. and B. Gupta, "Development of textile antennas for body wearable applications and investigations on their performance under bent conditions," Progress In Electromagnetics Research B, Vol. 22, 53-71, 2010.

    3. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, Artech House, London, 2006.

    4. Tseng, H.-W., S.-T. Sheu, and Y.-Y. Shih, "Rotational listening strategy for IEEE 802.15.4 wireless body networks," IEEE Sensors Journal, Vol. 11, No. 9, 1841-1855, 2011.

    5. Chedid, M., I. Belov, and P. Leisner, "Electromagnetic coupling to a wearable application based on coaxial cable architecture," Progress In Electromagnetics Research, Vol. 56, 109-128, 2006.

    6. Osman, M. A. R., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroided fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.

    7. Axisa, F., F. Bossuyt, T. Vervust, and J. Vanfleteren, "Laser based fast prototyping methodology of producing stretchable and conformable electronic systems," Proc. Electronics System-ntegration Technol. Conf.,, 1387-1390, London, Sep. 2008.

    8. Loher, T., M. Seckel, and A. Ostmann, "Stretchable electronics manufacturing and application," Proc. Electronics System-integration Technol. Conf., 1-6, Berlin, Sep. 2010.

    9. El-Nasr, M. A., H. A. Shaban, and R. M. Buehrer, "Key design parameters and sensor-fusion for low-power wearable UWB-based motion tracking and gait analysis systems," Progress In Electromagnetics Research Letters, Vol. 29, 115-126, 2012.

    10. Gupta, R. C. and S. P. Singh, "Development and analysis of a microwave direct contact water-loaded box-horn applicator for therapeutic heating of bio-medium," Progress In Electromagnetics Research, Vol. 62, 217-235, 2006.

    11. Theilmann, P. T., M. A. Tassoudji, E. H. Teague, D. F. Kimball, and P. M. Asbeck, "Computationally efficient model for UWB signal attenuation due to propagation in tissue for biomedical implants," Progress In Electromagnetics Research B, Vol. 38, 1-22, 2012.

    12. Mantysalo, M., V. Pekkanen, K. Kaija, J. Niittynen, S. Koskinen, E. Halonen, P. Mansikkamaki, and O. Hameenoja, "Capability of inkjet technology in electronics manufacturing," Proc. 59th Electronic Components and Technology Conf., 1330-1336, San Diego, CA, May 2009.

    13. Pynttari, V., R. Makinen, V. Palukuru, K. Ostman, H. Sillanpaa, T. Kanerva, T. Lepisto, J. Hagberg, and H. Jantunen, "Application of wide-band material characterization methods to printable electronics," IEEE Trans. Electronics Packaging Manufacturing,, Vol. 33, No. 3, 221-227, 2010.

    14. AWR Microwave Office, AWR Corporation, , Referred Oct. 1, 2012, http://www.awrcorp.com/.

    15. Dielectric properties of body tissues, , Referred Oct. 1, 2012, Available Online: http://niremf.ifac.cnr.it/tissprop/.

    16. Carchon, G. and B. Nauwelaers, "Accurate transmission line characterisation on high and low-resistivity substrates," IEE Proc. Microwaves, Antennas and Propagation, Vol. 148, No. 5, 285-290, 2001.

    17. Mangan, A. M., S. P. Voinigescu, M.-T. Yang, and M. Tazlauanu, "De-embedding transmission line measurements for accurate modeling of IC designs," IEEE Trans. Electron. Devices, Vol. 53, No. 2, 235-241, 2006.

    18. Sillanpaa, H., J. Lilja, R. Makinen, K. Ostman, V. Palukuru, J. Virtanen, V. Pynttari, T. Kanerva, J. Hagberg, T. Lepisto, H. Jantunen, and P., "Application of wide-band material parameter extraction techniques to printable electronics characterization," Proc. 59th Electronic Components and Technology Conf., 1342-1348, San Diego, CA, May 2009.

    19. Sillanpaa, H., A. Rasku, and R. Makinen, "A multiline material parameter extraction method," Proc. Mediterranean Microwave Symp., 314-317, Gyzelyurt, Cyprus, Aug. 2010.

    20. Rasku, A., H. Sillanpaa, I. Hiltunen, and R. Makinen, "Multiline material parameter extraction method performance analysis," Proc. Asia-Pacific Microwave Conf., 1905-1908, Yokohama, Japan, Dec. 2010 .

    21. Makinen, R., A. Rasku, and H. Sillanpaa, "Modeling-based printed electronics characterization," Proc. IEEE Antennas Propagat. Intl. Symp., 1-2, Chicago, IL, Jul. 2012.

    22. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1205-1215, 1991.

    23. Enderling, S., C. L. Brown, III, S. Smith, M. H. Dicks, J. T. M. Stevenson, M. Mitkova, M. N. Kozicki, and A. J. Walton, "Sheet resistance measurement of non-standard cleanroom materials using suspended Greek cross test structures," IEEE T. Semicond. Manuf., Vol. 19, No. 1, 2-9, 2006.