Vol. 37
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-02-05
A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization
By
Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013
Abstract
A high-directivity patch antenna with broadside directivity is attractive, since a narrow beam can be obtained without the need of using an array of antennas. Therefore, the solution becomes simpler as there is no need for a complicated feeding network. In this sense, this paper presents a novel patch antenna design with high directivity in the broadside direction by using genetic algorithms (GA). The proposed GA method divides the overall patch area into different cells taking into account that cells have a small overlap area between them. This avoids optimized geometries where cells have only an infinitesimal connection. Therefore, the proposed method is robust for manufacturing. The antenna operates in a higher-order mode at 4.12 GHz and the geometry fits inside a patch of 40 mm × 40 mm on a substrate with a relative permittivity of 3.38 and a thickness of 1.52 mm resulting in a directivity of 10.5 dBi. The specialty of this design is the use of GA to select the optimized shape and the feeding position instead of a known shape and a fixed feeding position. The antenna has been fabricated and the simulation results are in good agreement with the measurements. This results in a simpler design of a single high-directivity patch, which can substitute an array of two elements operating in the fundamental mode.
Citation
Jeevani Windhya Jayasinghe, Jaume Anguera, and Disala N. Uduwawala, "A High-Directivity Microstrip Patch Antenna Design by Using Genetic Algorithm Optimization," Progress In Electromagnetics Research C, Vol. 37, 131-144, 2013.
doi:10.2528/PIERC13010805
References

1. Balanis, C. A., Antenna Theory and Design, 2nd Ed., John Willey & Sons, Inc., 1997.

2. Anguera, J., C. Puente, C. Borja, R. Montero, and J. Soler, "Small and high directivity bowtie patch antenna based on the sierpinski fractal," Microwave and Optical Technology Letters, Vol. 31, No. 3, 239-241, November 2001.
doi:10.1002/mop.1407

3. Romeu, J., C. Borja, and S. Blanch, "High directivity modes in the koch island fractal patch antenna," IEEE Antennas and Propagation Symposium, 1696-1699, 2000.

4. Anguera, J., J. P. Daniel, C. Borja, J. Mumbru, C. Puente, T. Leduc, N. Laeveren, and P. V. Roy, "Metallized foams for fractal-shaped microstrip patch antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 6, 20-38, 2008.
doi:10.1109/MAP.2008.4772718

5. Borja, C., G. Font, S. Blanch, and J. Romeu, "High directivity fractal boundary microstrip patch antenna," IEE Electronic Letters, Vol. 36, No. 9, 778-779, 2000.
doi:10.1049/el:20000625

6. Anguera, J., L. Boada, C. Puente, C. Borja, and J. Soler, "Stacked H-shaped microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 983-993, 2004.
doi:10.1109/TAP.2004.825812

7. Moldovan, E., B. Lindmark, and P. Slattman, "Optimization of a stacked patch antenna for high directivity," 13emes Journees nternationales de Nice sur les Antennes (JINA, 317-372, 2004, www.ee.kth.se/php/modules/publications/reports/2004/IR-S3-SB-0460.pdf.

8. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
doi:10.1109/TAP.2009.2037702

9. Foroozesh, A. and L. Shafai, "On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 78-91, 2012.
doi:10.1109/TAP.2011.2167933

10. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

11. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Z. Duan, H. Ma, and Z. Xu, "A novel high-directivity microstrip patch antenna based on zero-index metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 538-541, 2009.
doi:10.1109/LAWP.2009.2018710

12. Cheype, C., C. Serier, M. Thevenot, T. Monediµere, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

13. El-Khouly, E., H. Ghali, and S. A. Khamis, "High directivity antenna using a modified Peano space-filling curve," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 405-407, 2007.
doi:10.1109/LAWP.2007.903492

14. Yang, H. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 185-187, 1997.
doi:10.1109/8.554261

15. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995.
doi:10.1109/74.382334

16. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992

17. Thors, B., H. Steyskal, and H. Holter, "Broadband fragmented aperture phased array element design using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 53, 3280-3287, 2005.
doi:10.1109/TAP.2005.856340

18. Jayasinghe, J. M. J. W. and D. N. Uduwawala, "A broadband triple-frequency patch antenna for WLAN applications using genetic algorithm optimization," 7th IEEE International Conference on Industrial and Information Systems, 1-4, 2012.

19. Ozgun, O., et al. "Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1947-1954, 2003.
doi:10.1109/TAP.2003.814732

20. Choo, H., A. Hutani, L. C. Trintinalia, and H. Ling, "Shape optimisation of broadband microstrip antennas using genetic algorithm," Electronics Letters, Vol. 36, No. 25, 2057-2058, 2000.
doi:10.1049/el:20001452

21. Sun, S., L. V. Yinghua, and J. Zhang, "The application of genetic algorithm optimization in broadband microstrip antenna design," Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

22. Spence, T. G., D. H. Werner, and R. D. Groff, "Genetic algorithm optimization of some novel broadband and multiband microstrip antennas," Antennas and Propagation Society International Symposium, Vol. 4, 4408-4411, 2004.

23. Griffiths, L. A., C. Furse, and Y. C. Chung, "Broadband and multiband antenna design using the genetic algorithm to create amorphous shapes using ellipses," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 10, 2776-2782, October 2006.
doi:10.1109/TAP.2006.882154

24. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, 2424-2435, 2004.
doi:10.1109/TAP.2004.834071

25. Jayasinghe, J. W., J. Anguera, and D. N. Uduwawala, "A simple design of multi band microstrip patch antennas robust to fabrication tolerances for GSM, UMTS, LTE, and Bluetooth applications by using genetic algorithm optimization," Progress In Electromagnetics Research M, Vol. 27, 255-269, 2012.

26. Jayasinghe, J. M. J. W., D. N. Uduwawala, and J. Anguera, "Design of dual band patch antennas for cellular communications by genetic algorithm optimization," International Journal of Engineering and Technology, Vol. 1, No. 1, 26-43, 2012.

27. Johnson , J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MoM): A novel integration for antenna design," Antennas and Propagation Society International Symposium , Vol. 3, 1664-1667, 1997.

28. Sathi, V., S. Taherizadeh, A. Lotfi, and C. Ghobadi, "Optimisation of multi-frequency microstrip antenna using genetic algorithm coupled with method of moments," Microwaves, Antennas & Propagation, IET, Vol. 4, No. 4, 477-483, 2010.
doi:10.1049/iet-map.2009.0020

29. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "Parallel genetic-algorithm optimization of a dual-band patch antenna for wireless communications," Antennas and Propagation Society International Symposium, Vol. 1, 334-337, 2002.

30. Herscovici, N., M. F. Osorio, and C. Peixeiro, "Miniaturization of rectangular microstrip patches using genetic algorithms," IEEE Antennas and Wireless Propagation Letters, Vol. 1, 94-97, 2002.
doi:10.1109/LAWP.2002.805128

31. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Miniaturized biocompatible microstrip antenna using genetic algorithms," EEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, 2005.
doi:10.1109/TAP.2005.848461