Vol. 39
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-04-16
RF Propagation Experiments in Agricultural Fields and Gardens for Wireless Sensor Communications
By
Progress In Electromagnetics Research C, Vol. 39, 103-118, 2013
Abstract
This work presents results for the path loss due to foliage at 2.4 GHz using RF equipment and XBee-PRO ZB S2B transceiver modules in Agricultural fields (Corn, Paddy and Groundnut) and Gardens (Coconut garden with green grass, open lawn with dry green grass and wet green grass) targeting short-range, near ground RF propagation measurements for planning and deployment of Wireless Sensor Communications for precise agriculture and plantation management applications. Path Loss (PL), Path Loss Exponent (PLE) and corresponding Root Mean Square Error (RMSE) values were deduced from the measured RSS from various positions in these environments. Empirical foliage loss prediction models such as COST 235, Early ITU Vegetation and Weissberger models were compared with the experimental results.
Citation
Balachander Dhanavanthan, Thipparaju Rama Rao, and Govindaraju Mahesh, "RF Propagation Experiments in Agricultural Fields and Gardens for Wireless Sensor Communications," Progress In Electromagnetics Research C, Vol. 39, 103-118, 2013.
doi:10.2528/PIERC13030710
References

1. Akyildiz, I. F. and M. C. Vuran, Wireless Sensor Networks, John Wiley and Sons Ltd., New Jersey, 2010.
doi:10.1002/9780470515181

2. Cook, D. J. and S. K. Das, "Smart Environments: Technology, Protocols and Applications," Wiley, Hoboken, 2004.

3. Tamir, T., "On radio-wave propagation in forest environments," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 6, 806-817, 1967.
doi:10.1109/TAP.1967.1139054

4. Beckwith, R., D. Teibel, and P. Bowen, "Unwired wine: Sensor networks in vineyards," Proc. IEEE Sensors, 561-564, Austria, 2004.

5. Burrell, J., T. Brooke, and R. Beckwith, "Vineyard computing: Sensor networks in agricultural production," IEEE Pervasive Computing, Vol. 3, No. 1, 38-45, 2004.
doi:10.1109/MPRV.2004.1269130

6. Wang, N., N. Zhang, and M. Wang, "Wireless sensors in agriculture and food industry-recent development and future perspective," Computers and Electronics in Agriculture, Vol. 50, No. 1, 1-14, 2006.
doi:10.1016/j.compag.2005.09.003

7. Wang, N., Z. Li, A. Franzen, and P. Taher, "Development of wireless sensor network for precision agriculture applications," Proc. the CIGR International Symposium of the Australian Society for Engineering in Agriculture, 414-421, Brisbane, Queensland, Australia, 2009.

8. Andrade-Sanchez, P., F. J. Pierce, and T. V. Elliott, "Performance assessment of wireless sensor networks in agricultural settings," Proc. ASABE Annual International Meeting, Minneapolis, Minnesota, 2007.

9. Wark, T., P. Corke, P. Sikka, L. Klingbeil, Y. Gao, C. Crossman, P. Valencia, D. Swain, and G. Bishop-Hurley, "Transforming agriculture through pervasive wireless sensor networks," IEEE Pervasive Computing, Vol. 6, No. 2, 50-57, 2007.
doi:10.1109/MPRV.2007.47

10. Schwering, F. K., E. J. Violette, and R. H. Espeland, "Millimeter-wave propagation in vegetation: Experiments and theory," IEEE Transactions on Geoscience and Remote Sensing, Vol. 26, No. 3, 355-367, 1988.
doi:10.1109/36.3037

11. Al-Nuaimi, M. O. and A. M. Hammoudeh, "Measurements and prediction of attenuation and scatter of microwave signals by trees," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 141, No. 2, 70-76, 1994.
doi:10.1049/ip-map:19949840

12. Seville, A., "Vegetation attenuation: Modelling and measurements at millimetric frequencies," Proc. Tenth International Conference on Antennas and Propagation, 5-8, Edinburg, 1997.

13. Savage, N., et al. "Radio wave propagation through vegetation: Factors in°uencing signal attenuation," Radio Science, Vol. 38, No. 5, October 2003.

14. Wang, F. and K. Sarabandi, "An enhanced millimeter-wave foliage propagation model," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 7, 2138-2145, 2005.
doi:10.1109/TAP.2005.850704

15. ITU-R, Recommendation, P. 833-3, "Attenuation in vegetation,", 2001.

16. Weissberger, , M., R. Meidenbauer, H. Riggins, and S. Marcus, "Radiowave propagation: A handbook of practical techniques for computing basic transmission loss and field strength,", 369, ECAC, Annapolis, Maryland, 1982.

17. Seybold, J. S., Introduction to RF Propagation, John Wiley, New Jersey, 2005.
doi:10.1002/0471743690

18. COST 235 "Radio propagation effects on next-generation fixed-service terrestrial telecommunication systems,", Final Report,Luxembourg, 1996.

19. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall PTR, New Jersey, 2002.

20. Ndzi, D. L., M. Kamarudin, A. A. Muhammad Ezanuddin, A. Zakaria, R. B. Ahmad, M. F. B. A. Malek, A. Y. M. Shakaff, and M. N. Jafaar, "Vegetation attenuation measurements and modeling in plantations for wireless sensor network planning," Progress In Electromagnetics Research B, Vol. 36, 283-301, 2012.
doi:10.2528/PIERB11091908

21. Teschl, , F., et al. "Attenuation of spruce, pine and deciduous woodland at C-band," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 109-112, 2012.
doi:10.1109/LAWP.2012.2184253

22. Li, S. and H. Gao, "Propagation characteristics of 2.4 GHz wireless channel in cornfields," Proc. 13th IEEE International Conference on Communication Technology, 136-140, Jinan, 2011.

23., http://sites.tnau.ac.in/trri/agro-advisory-unit/thanjavur, accessed August 2012.

24. Meng, Y. S., Y. H. Lee, and B. C. Ng, "Study of propagation loss prediction in forest environment," Progress In Electromagnetics Research B, Vol. 17, 117-133, 2009.
doi:10.2528/PIERB09071901