Vol. 41
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-07-11
A Compact Wideband Bandpass Filter Using Novel CSRR Loaded QMSIW Resonator with High Selectivity
By
Progress In Electromagnetics Research C, Vol. 41, 239-254, 2013
Abstract
A novel quarter-mode substrate integrated waveguide (QMSIW) resonator with back-to-back triangular complementary split-ring resonators (CSRRs) etched on the waveguide surface is proposed in this paper. The proposed CSRR structures allow the implementation of a forward-wave passband propagating with high selectivity below the characteristic cutoff frequency of the conventional QMSIW. Utilizing the property of flexible open structure on QMSIWs' two sides, a cascaded quadruplet (CQ) bandpass filter (BPF) using the proposed QMSIW resonator and proximity coupling structure is presented. Compared with some other reported BPFs with SIW technique, the presented BPF using the novel QMSIW resonator has great improvements on size reduction and selectivity, simultaneously, with simple geometry. At the center frequency of 3.7 GHz, the designed BPF filter achieves a wideband with a fractional bandwidth up to 24.3% and a high selectivity with a shape factor of 1.23. The compact dimension of this filter is as small as 0.36λg×0.36λg, where λg is the guide wavelength at the center frequency. The proposed filter is simulated, fabricated and tested. The measured results are in good agreement with the simulation.
Citation
Hailin Cao, Sijia He, Hao Li, and Shizhong Yang, "A Compact Wideband Bandpass Filter Using Novel CSRR Loaded QMSIW Resonator with High Selectivity," Progress In Electromagnetics Research C, Vol. 41, 239-254, 2013.
doi:10.2528/PIERC13053006
References

1. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wirel. Compon. Lett., Vol. 12, No. 9, 333-335, Sep. 2002.
doi:10.1109/LMWC.2002.803188

2. Deslandes, D., K. Wu, and , "Accurate modeling, wave mechanism, and design consideration of a substrate integrated waveguide," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 6, 2516-2526, Jun. 2006.
doi:10.1109/TMTT.2006.875807

3. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 x 4 Butler matrix in SIW technology for wide band high power applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, 2011.
doi:10.2528/PIERB11062004

4. Cheng, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.

5. Su, P., Z. X. Tang, and B. Zhang, "Push-push dielectric resonator oscillator using substrate integrated waveguide power combiner," Progress In Electromagnetics Research Letters,, Vol. 30, 105-113, 2012.
doi:10.2528/PIERL11122302

6. Wang, R., L. S. Wu, and X. L. Zhou, "Compact folded substrate integrated waveguide cavities and bandpass filter," Progress In Electromagnetics Research, Vol. 84, 135-147, 2008.
doi:10.2528/PIER08071501

7. Ismail, A., M. S. Razalli, M. A. Mahdi, R. S. A. R. Abdullah, N. K. Noordin, and M. F. A. Rasid, "X-band trisection substrate-integrated waveguide quasi-elliptic filter," Progress In Electromagnetics Research, Vol. 85, 133-145, 2008.
doi:10.2528/PIER08081802

8. Huang, Y. M., Z. H. Shao, and L. F. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.

9. Wang, Y. Q., W. Hong, Y. D. Dong, B. Liu, H. J. Tang, J. X. Chen, X. X. Yin, K.Wu, "Half mode substrateintegrated waveguide (HMSIW) bandpass filter," IEEE Microw. Wirel. Compon. Lett., Vol. 17, No. 4, 265-267, Apr. 2007.
doi:10.1109/LMWC.2007.892958

10. Song, Q. Y., H. R. Cheng, X. H. Wang, L. Xu, X. Q. Chen, and X. W. Shi, "Novel wideband bandpass filter integrating HMSIW and DGS," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 2031-2040, 2009.
doi:10.1163/156939309789932412

11. Gong, K., W. Hong, H. J. Tang, and J. X. Chen, "C-band bandpass filter based on half mode substrate integrated waveguide (HMSIW) cavities," 2009 Asia-Pacific Microwave Conference, Singapore, Dec. 2009.

12. Wang, , Z., X. Li, S. Zhou, B. Yan, R.-M. Xu, and W. Lin, "Half mode substrate integrated folded waveguide (HMSIFW) and partial H-plane bandpass filter," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
doi:10.2528/PIER10011201

13. Zhang, Z., N. Yang, and K. Wu, "5 GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless system," 2009 Radio and Wireless Symposium, San Diego, Jan. 2009.

14. Chen, X. P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 2008.
doi:10.1109/TMTT.2007.912222

15. Guo, Z., K. S. Chin, W. Che, and C. C. Chang, "Cross-coupled bandpass filters using QMSIW cavities and S-shaped slot coupling structures," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 2, 160-167, 2013.
doi:10.1080/09205071.2013.741514

16. Falcone, F., T. Lopetegi, J. D. Baena, R. Marqudes, F. Martin, and M. Sorolla, "Effective negative-ε stop-band microstrip lines based on complementary split ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 6, 280-282, Jun. 2004.
doi:10.1109/LMWC.2004.828029

17. Zhang, X., Z. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
doi:10.2528/PIER07030201

18. Wu, L. S., X. L. Zhou, Q. F. Wei, and W. Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microw. Wirel. Compon. Lett., Vol. 19, No. 12, Dec. 2009.
doi:10.1109/LMWC.2009.2034034

19. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, Sept. 2009.
doi:10.1109/TMTT.2009.2027156

20. Zhang, Q. L., W. Y. Yin, S. L. He, and L. S. Wu, "Compact substrate integrated waveguide (SIW) bandpass filter with complementary split-ring resonators (CSRRs)," IEEE Microw. Wirel. Compon. Lett., Vol. 20, No. 8, Aug. 2010.

21. Dong, Y. D. and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design," IEEE Microw. Wirel. Compon. Lett., Vol. 21, No. 1, Jan. 2011.
doi:10.1109/LMWC.2010.2091263

22. Jiang, W., W. Shen, L. Zhou, and W. Y. Yin, "Miniaturized and high-selectivity substrate integrated waveguide (SIW) bandpass filter loaded by complementary split-ring resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, Aug. 2012.
doi:10.1080/09205071.2012.702203

23. Xu, Z. Q., Y. Shi, C. Y. Xu, and P. Wang, "A novel dual mode substrate integrated waveguide filter with mixed source-load coupling (MSLC)," Progress In Electromagnetics Research, Vol. 136, 595-606, 2013.

24. Chu, Q. X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, Feb. 2008.
doi:10.1109/TMTT.2007.914642

25. Lee, K., T. H. Lee, Y. S. Kim, and J. Lee, "New negative coupling structure for substrate-integrated cavity resonators and its application to design of an elliptic response filter," Progress In Electromagnetics Research, Vol. 137, 117-127, 2013.

26. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line siw filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.

27. Hong, J. S. and M. Lancaster, Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2001.
doi:10.1002/0471221619