Vol. 42
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-20
High-Dynamic DOA Estimation Based on Weighted L1 Minimization
By
Progress In Electromagnetics Research C, Vol. 42, 253-265, 2013
Abstract
In high dynamic environment, due to the rapid relative movement between receiver and transmitter, the DOA (Direction of Arrival) of signals will change even between two consecutive snapshots. Thus, covariance-based DOA estimation algorithms are ineffective. Compressive sensing algorithms, as a kind of novel DOA estimation algorithms, are still effective with only one snapshot. At the same time, it is noted that the DOA changing is limited by relative moving speed and distance between receiver and transmitter. In this paper, a DOA tracking algorithm based on weighted L1 minimization is proposed which utilizing the DOA changing scope between two consecutive snapshots as a prior to improve the tracking performance. Different from other multiple snapshots compressive sensing algorithms which assumed fixed DOA among multiple consecutive snapshots, the proposed algorithm takes into account the DOA changing among different snapshots. The simulation results demonstrate the advantages of the proposed algorithm.
Citation
Wenyi Wang Renbiao Wu , "High-Dynamic DOA Estimation Based on Weighted L1 Minimization," Progress In Electromagnetics Research C, Vol. 42, 253-265, 2013.
doi:10.2528/PIERC13061410
http://www.jpier.org/PIERC/pier.php?paper=13061410
References

1. Stoica, P. and and R. L. Moses, Introduction to Spectral Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1997.

2. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

3. Roy, R. and T. Kailath, "Esprit-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

4. Stoica, P. and A. Nehorai, "Music, maximum likelihood, and Cramer-Rao bound: Further results and comparisons," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 38, No. 12, 2140-2150, 1990.
doi:10.1109/29.61541

5. Malioutov, D., M. Cetin, and A. S. Willsky, "A sparse signal reconstruction perspective for source localization with sensor arrays," IEEE Transactions on Signal Processing, Vol. 53, No. 8, 3010-3022, 2005.
doi:10.1109/TSP.2005.850882

6. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

7. Chen, S., D. L. Donoho, and A. S. Michael, "Atomic decomposition by basis pursuit," SIAM Journal on Scientific Computing, Vol. 20, No. 1, 33-61, 1998.
doi:10.1137/S1064827596304010

8. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

9. Needell, D. and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, Vol. 26, No. 3, 301-321, 2008.
doi:10.1016/j.acha.2008.07.002

10. Vaswani, N., "Kalman filtered compressed sensing," Proceedings of the International Conference on Image Processing, ICIP 2008, 893-896, 2008.
doi:10.1109/ICIP.2008.4711899

11. Vaswani, N. and W. Lu, "Modified-CS: Modifying compressive sensing for problems with partially known support," IEEE Transactions on Signal Processing, Vol. 58, No. 9, 4595-4607, 2010.
doi:10.1109/TSP.2010.2051150

12. Candes, E. J., M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted L1 minimization," Journal of Fourier Analysis and Applications, Vol. 14, 877-905, 2008.
doi:10.1007/s00041-008-9045-x

13. Candes, E. and J. Romberg, "L1-magic: Recovery of sparse signals via convex programming,", http://www.acm.caltech.edu/l1magic/, 2005.

14. Asif, M. S. and J. Romberg, "Fast and accurate algorithms for reweighted L1-norm minimization,", Available: http://arxiv.org/abs/1208.0651, 2012.

15. Asif, M. S. and J. Romberg, "Sparse recovery of streaming signals using L1-homotopy,", Available: http://arxiv.org/abs/1306.3331.