Vol. 42
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-01
Dielectric Loaded Exponentially Tapered Slot Antenna Utilizing Substrate Integrated Waveguide Technology for Millimeter Wave Applications
By
Progress In Electromagnetics Research C, Vol. 42, 149-164, 2013
Abstract
A novel compact dielectric loaded Exponentially Tapered Slot (ETS) antenna using Substrate Integrated Waveguide (SIW) technology is presented in this paper for Millimeter (Mm) wave wireless communication applications. The dielectric loaded ETS antenna and compact SIW feed are fabricated on a single substrate. The compact SIW feeding structure results in a considerable reduction in size and eliminates the unwanted radiations from feed. The proposed antenna is designed, fabricated, and investigated at 60 GHz. Furthermore, the proposed antenna design is simulated using electromagnetic software CST Microwave Studio and the comparison is made with Ansys HFSS to validate the design procedure. The measurement results are compared with simulated results.
Citation
Subramaniam Ramesh Thipparaju Rama Rao , "Dielectric Loaded Exponentially Tapered Slot Antenna Utilizing Substrate Integrated Waveguide Technology for Millimeter Wave Applications," Progress In Electromagnetics Research C, Vol. 42, 149-164, 2013.
doi:10.2528/PIERC13062003
http://www.jpier.org/PIERC/pier.php?paper=13062003
References

1. Rappaport the art in 60-GHz integrated circuits and systems for wireless communications, T. S., J. N. Murdock, and F. Gutierrez, "State of," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011.

2. Smulders, P., "Exploiting the 60 GHz band for local wireless multimedia access: Prospects and future directions," IEEE Communications Magazine, Vol. 40, No. 1, 140-147, 2002.

3. Meinel, H. H., "Commercial applications of millimeter waves --- History, present status and future trends," IEEE Transactions Microwave Theory Tech., Vol. 43, No. 7, 1639-1653, Jul. 1995.

4. Yong, S. K. and C.-C. Chong, "An overview of multi gigabit wireless through millimeter wave technology: Potentials and technical challenges," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, Article ID 78907, 2007.

5. Xiao, S.-Q., M.-T. Zhou, and Y. Zhang, "Millimeter Wave Technology for Wireless LAN, PAN and MAN," Auerbach Publications, 2008.

6. Huang, K.-C. and D. J. Edwards, Millimeter Wave Antennas for Gigabit Wireless Communications, John Wiley & Sons Ltd. Publications, 2008.

7. Deslandes, D. and K.Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Transactions on Microwave Theory Tech., Vol. 51, No. 2, 593-596, Feb. 2003.

8. Wu, K., Y. J. Cheng, T. Djerafi, and W. Hong, "Substrate-integrated millimeter-wave and terahertz antenna technology ," Proceedings of the IEEE, Vol. 100, No. 7, 2219-2232, Jul. 2012.

9. Lee, S., S. Yang, A. E. Fathy, and A. Elsherbini, "Development of a novel UWB Vivaldi antenna array using SIW technology," Progress In Electromagnetic Research, Vol. 90, 369-384, 2009.

10. Cheng, S., H. Yousef, and H. Kratz, "79 GHz slot antennas based on substrate integrated waveguides (SIW) in a flexible printed circuit board," IEEE Transactions on Antennas Propagation, Vol. 57, No. 1, 64-70, Jan. 2009.

11. Bakhtafrooz, A., A. Borji, and D. Busuioc, "Novel two-layer millimeter-wave slot array antennas based on substrate integrated waveguides," Progress In Electromagnetics Research, Vol. 109, 475-491, 2010.

12. Gibson, J. P., "The Vivaldi aerial," Proceedings of 9th European Microwave Conference, 101-105, Brighton, UK, Jun. 1979.

13. Gazit, E., "Improved design of the Vivaldi antenna," IEE Proceedings, Vol. 135, No. 2, 89-92, Apr. 1988.

14. Yngvesson, K. S., T. Korzeniowski, Y. Kim, E. Kollberg, and J. F. Johansson, "The tapered slot antenna --- A new integrated element for millimeter wave applications," IEEE Transactions on Microwave Theory Tech., Vol. 37, No. 2, 365-374, Feb. 1989.

15. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultra wide-band applications," IEEE Antennas Wireless Propagation Letters, Vol. 7, 656-660, 2008.

16. Wu, K., D. Deslandes, and Y. Cassivi, "The substrate integrated circuits --- A new concept for high-frequency electronics and optoelectronics," Proc. 6th Int. Conf. Telecommun. Modern Satellite, Cable Broadcasting Service, Vol. 1, No. 1, 1-3, Oct. 2003.

17. Costanzo, S., G. A. Casula, A. Borgia, G. Montisci, I. Venneri, G. Di Massa, and G. Mazzarella, "Synthesis of slot arrays on integrated waveguides," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 962-965, 2010.

18. Liu, Q., Y. Liu, Y. Wu, J. Shen, S. Li, C. Yu, and M. Su, "A substrate integrated waveguide to substrate integrated coaxial line transition," Progress In Electromagnetics Research C, Vol. 36, 249-259, 2013.

19. Yan, L., W. Hong, K. Wu, and T. J. Cui, "Investigations of the propagation characteristics of the substrate integrated waveguide based on the method of lines," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 35-42, Feb. 2005.

20. Abaei, E., E. Mehrshahi, G. Amendola, E. Arnieri, and A. Shamsafar, "Two dimensional multi-port method for analysis of propagation characteristics of substrate integrated waveguide," Progress In Electromagnetics Research C, Vol. 29, 261-273, 2012.

21. Langley, D., P. Hall, and P. Newham, "Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays," IEE Proc. Microwave Antennas Propag., Vol. 143, No. 2, 97-102, Apr. 1996.

22. Yang, Y., Y. Wang, and A. E. Fathy, "Design of compact Vivaldi antenna arrays for uwb see through wall applications," Progress In Electromagnetics Research, Vol. 82, 401-418, 2008.

23. Hood, A. Z., T. Karacolak, and E. Topsakal, "A small antipodal Vivaldi antenna for ultrawide-band applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 556-560, 2008.

24. Kedar, A. and K. S. Beenamole, "Wide beam tapered slot antenna for wide angle scanning phased array antenna," Progress In Electromagnetics Research B, Vol. 27, 235-251, 2011.

25. Alhawari, A. R. H., A. Ismail, M. A. Mahdi, and R. S. A. R. Abdullah, "Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial," Progress In Electromagnetics Research C, Vol. 27, 265-279, 2012.

26. Nocedal, J. and S. J. Wright, Numerical Optimization, Springer, August 2000.

27. Jia, Y., Y. Liu, S. Gong, T. Hong, and D. Yu, "Printed UWB end fire Vivaldi antenna with low RCS," Progress In Electromagnetics Research Letters, Vol. 37, 11-30, 2013.

28. Ramesh, S. and T. R. Rao, "Dielectric loaded exponentially tapered slot antenna for wireless communications at 60 GHz," Progress In Electromagnetics Research C, Vol. 38, 43-54, 2013.