Vol. 44

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-09-13

An Alternative Technique for Estimating the k -Factor from the Phase of the Electromagnetic Field Within a Reverberating Chamber

By Antonio Sorrentino, Giuseppe Ferrara, Angelo Gifuni, and Maurizio Migliaccio
Progress In Electromagnetics Research C, Vol. 44, 27-40, 2013
doi:10.2528/PIERC13080202

Abstract

In this paper, an alternative technique for estimating the Rice factor, K, is applied to the phase of electromagnetic field within a reverberating chamber (RC) for classifying the fading depth on the coherent components in the emulated line-of-sight (LOS) environments. The estimator is time-effective and general, and can be applied for any angle of arrival (AoA) of the received field and for any time varying propagation channel as a complementary method to the classical estimators for evaluating K above all when small but consistent coherent components are present. Measurements accomplished at the RC of the Università di Napoli Parthenope (formerly Istituto Universitario Navale, IUN) confirm the goodness of the proposed technique.

Citation


Antonio Sorrentino, Giuseppe Ferrara, Angelo Gifuni, and Maurizio Migliaccio, "An Alternative Technique for Estimating the k -Factor from the Phase of the Electromagnetic Field Within a Reverberating Chamber," Progress In Electromagnetics Research C, Vol. 44, 27-40, 2013.
doi:10.2528/PIERC13080202
http://www.jpier.org/PIERC/pier.php?paper=13080202

References


    1. Ferrara, G., M. Migliaccio, and A. Sorrentino, "Characterization of GSM non-line-of-sight (NLOS) propagation channels generated in a reverberating chamber by using bit-error-rates (BER)," IEEE Trans. Electromagn. Compat., Vol. 49, No. 3, 467-473, 2007.
    doi:10.1109/TEMC.2007.903040

    2. Sorrentino, A., G. Ferrara, and M. Migliaccio, "The reverberating chamber as emulator of radar ground clutter doppler spectra," Proceedings of EUCAP 2010, 1-4, 2010.

    3. Staniec, K., "Evaluation of the zigbee transmission repetition mechanism in the variably-loaded reverberation chamber," Progress In Electromagnetics Research, Vol. 132, 297-314, 2012.

    4. Kostas, J. G. and B. Boverie, "Statistical model for a mode stirred chamber," IEEE Trans. Electromagn. Compat., Vol. 33, No. 4, 366-370, 1991.
    doi:10.1109/15.99120

    5. Sorrentino, A., P. S. Kildal, U. Carlberg, and E. Pucci, "Accuracy in reverberation chamber for wireless testing: Simple formulas for the number of independent samples," Proceedings of EuCAP 2009, 2673-2677, 2009.

    6. Sorrentino, A., L. Mascolo, G. Ferrara, and M. Migliaccio, "The fractal nature of the electromagnetic field within a reverberating chamber," Progress In Electromagnetics Research C, Vol. 27, 157-167, 2012.
    doi:10.2528/PIERC11122702

    7. Corona, P. and Reverberating, "Reverberating chamber field in presence of an unstirred component," IEEE Trans. Electromagn. Compat., Vol. 42, No. 2, 111-115, 2000.
    doi:10.1109/15.852404

    8. Mariani, P. V. and F. Moglie, "Numerical simulation of LOS and NLOS conditions for an antenna inside a reverberation chamber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2319-2331, 2010.

    9. Sorrentino, A., G. Ferrara, A. Gifuni, and M. Migliaccio, "Antenna pattern in a multipath environment emulated in a reverberating chamber," Proceedings of EUCAP 2013, 3561-3565, 2013.

    10. Khaleghi, A., "Diversity techniques with parallel dipole antennas: Radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2006.
    doi:10.2528/PIER06062401

    11. Ferrara, G., A. Gifuni, and A. Sorrentino, "Test on antennas in a reverberating chamber and comparison with anechoic chamber," Proceedings of EUCAP 2012, 2154-2157, 2012.

    12. Chen, X., "Measurements and evaluations of multi-element antennas based on limited channel samples in a reverberation chamber," Progress In Electromagnetics Research, Vol. 131, 45-62, 2012.

    13. Sorrentino, A., F. Nunziata, G. Ferrara, and M. Migliaccio, "Reverberating chamber profile identification," IET Microwaves, Antennas & Propagation, Vol. 6, No. 13, 1468-1472, 2012.
    doi:10.1049/iet-map.2012.0080

    14. Sorrentino, A., G. Ferrara, and M. Migliaccio, "The kurtosis index to characterize near LOS conditions in reverberating chambers," IET Microwave, Antennas & Propagation, Vol. 7, No. 3, 175-179, 2013.
    doi:10.1049/iet-map.2012.0478

    15. Sorrentino, A., G. Ferrara, and M. Migliaccio, "On the coherence time control of a continuous mode stirred reverberating chamber," IEEE Trans. on Antennas and Propagation, Vol. 57, No. 10, 3372-3374, 2009.
    doi:10.1109/TAP.2009.2029373

    16. Sorrentino, A., G. Ferrara, and M. Migliaccio, "The reverberating chamber as a line-of-sight wireless channel emulator," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 6, 1825-1830, 2008.
    doi:10.1109/TAP.2008.923325

    17. Holloway, C. L., D. A. Hill, J. M. Ladbury, P. F. Wilson, G. Koepke, and J. Coder, "On the use of reverberation chambers to simulate a Rician radio environment for the testing of wireless devices," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 11, 1-11, 2006.
    doi:10.1109/TAP.2006.883987

    18. Sorrentino, A., G. Ferrara, and M. Migliaccio, "An effective indicator for NLOS, nLOS, LOS propagation channels conditions," Proceedings of EUCAP 2012, 1422-1426, 2012.

    19. Kildal, P. S. and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency and diversity gain of their antennas: Simulations and measurements in reverberation chamber," IEEE Communications Magazine, Vol. 42, No. 12, 102-112, 2004.
    doi:10.1109/MCOM.2004.1367562

    20. Chen, X., P. S. Kildal, J. Carlsson, and J. Yang, "Comparison of ergodic capacities from wideband MIMO antenna measurements in reverberation chamber and anechoic chamber," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 466-469, 2011.

    21. Lemoine, C., E. Amador, and P. Besnier, "On the K-factor estimation for Rician channel simulated in reverberation chamber," IEEE Trans. on Antennas and Propagation, Vol. 59, No. 3, 1003-1012, 2011.
    doi:10.1109/TAP.2010.2103003

    22. Lemoine, C., P. Besnier, and M. Drissi, "Advanced method for estimating direct-to-scattered ratio of Rician channel in a reverberation chamber," Electron. Lett., Vol. 45, No. 4, 194-196, 2009.
    doi:10.1049/el:20092677

    23. Ionut, M., P. Besnier, and C. Lemoine, "Estimating the K-factor and time spread parameters from a transient response of a pulse modulated sine wave in reverberation chamber," IEEE Trans. on Antennas and Propagation, Vol. 61, No. 1, 380-389, 2013.
    doi:10.1109/TAP.2012.2215831

    24. Tepedelenlioglu, C., A. Abdi, and G. B. Giannakis, "The Ricean K factor: Estimation and performance analysis," IEEE Trans. Wireless Commun., Vol. 2, No. 4, 799-810, 2003.
    doi:10.1109/TWC.2003.814338

    25. Baddour, K. E. and T. J. Willink, "Improved estimation of the Ricean K-factor from I/Q fading channel samples," IEEE Trans. Wireless Commun., Vol. 7, No. 12, 5051-5057, 2008.
    doi:10.1109/T-WC.2008.070972

    26. Ren, J. and R. G. Vaughan, "Rice factor estimation from the channel phase," IEEE Trans. Wireless Commun., Vol. 11, No. 6, 1976-1980, 2012.
    doi:10.1109/TWC.2012.040412.091208

    27. Valenzuela-Valdes, J. F., A. M. Martinez-Gonzalez, and D. A. Sanchez-Hernandez, "Emulation of MIMO nonisotropic fading environments with reverberation chambers," IEEE Trans. on Antenna and Wirelles Propag. Letters, Vol. 7, 325-328, 2008.
    doi:10.1109/LAWP.2008.928488

    28. Papoulis, A., Probability, Random Variables and Stochastic Process, MacGraw-Hill, New York, 1991.

    29. Moglie, F. and V. M. Primiani, "Numerical analysis of a new location for the working volume inside a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 54, No. 2, 238-245, 2012.
    doi:10.1109/TEMC.2012.2186303