Vol. 47
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-02-19
Some Aspects of Sidelobe Reduction in Pulse Compression Radars Using Nlfm Signal Processing
By
Progress In Electromagnetics Research C, Vol. 47, 119-129, 2014
Abstract
It is well known that in the pulse compression radar theory, the sidelobe reduction using nonlinear frequency modulation (NLFM) signal processing represents a major and present research direction. Accordingly, the main objective of this paper is to propose an interesting approach related to the design of efficient NLFM waveforms namely, a temporal predistortioning method of LFM signals by suitable nonlinear frequency laws. Some aspects concerning the optimization of the specific parameters involved into analyzed NLFM processing procedure are also included. The achieved experimental results confirm the significant sidelobe suppression related to other NLFM processing techniques.
Citation
Iulian Constantin Vizitiu, "Some Aspects of Sidelobe Reduction in Pulse Compression Radars Using Nlfm Signal Processing," Progress In Electromagnetics Research C, Vol. 47, 119-129, 2014.
doi:10.2528/PIERC14010605
References

1. Levanon, L. and E. Mozeson, Radar Signals, John Wiley & Sons, 2004.
doi:10.1002/0471663085

2. Vizitiu, I. C., Electronic Warfare. Fundamentals, MatrixRom Press, 2011.

3. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, 2005.

4. Anton, L., Signal Processing in High Resolution Radars, MTA Press, 2008.

5. Varshney, L. R. and D. Thomas, "Sidelobe reduction for matched filter range processing," Proceedings of IEEE Radar Conference, 446-451, 2003.

6. Lesnik, C., A. Kawalec, and M. Szugajew, The Synthesis of Radar Signal Having Nonlinear Frequency Modulation Function, WIT Press, 2011.

7. Blunt, S. D., T. Higgins, A. Shackelford, and K. Gerlach, "Multistatic & waveform-diverse radar pulse compression," Waveform Design and Diversity for Advanced Radar Systems, 207-230, IET Digital Library, 2012.

8. De Witte, E. and H. D. Griffiths, "Improved ultra-low range sidelobe pulse compression waveform design," IET Electronics Letters, Vol. 40, No. 22, 1448-1450, 2004.
doi:10.1049/el:20046548

9. Chan, Y. K., M. Y. Chua, and V. C. Koo, "Sidelobe reduction using two and tri-stages nonlinear frequency modulation (NLFM)," Progress In Electromagnetic Research, Vol. 98, 33-52, 2009.
doi:10.2528/PIER09073004

10. Vizitiu, I. C., L. Anton, G. Iubu, and F. Popescu, "Sidelobes reduction using frequency predistortioning techniques on LFM signals," Proceedings of IEEE ISETC Conference, 381-384, 2012.

11. Doerry, A. W., "Generating precision nonlinear FM chirp waveforms," SPIE Proceedings, Radar Sensor Technology XI, Vol. 6547, 2007.

12. Rani, D. E. and K. Sridevi, "Mainlobe width reduction using linear and nonlinear frequency modulation," Proceedings of IEEE ARTCom Conference, 918-920, 2009.

13. Jackson, L., S. Kay, and N. Vankayalapati, "Iterative method for nonlinear FM synthesis of radar signals," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 2, 910-917, 2010.
doi:10.1109/TAES.2010.5461666

14. Boukeffa, S., Y. Jiang, and T. Jiang, "Sidelobe reduction with nonlinear frequency modulated waveforms," Proceedings of IEEE CSPA Conference, 399-403, 2011.

15. Vizitiu, I. C., L. Anton, G. Iubu, and F. Popescu, "The synthesis of some NLFM laws using the stationary phase principle," Proceedings of IEEE ISETC Conference, 377-380, 2012.

16. Luszczyk, M. and A. Labudzinski, "Sidelobe level reduction for complex radar signals with small base," Proceedings of IEEE IRS Conference, 146-149, 2012.

17. Gladkova, I., "Design of frequency modulated waveforms via the Zak transform," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 1, 355-359, 2004.
doi:10.1109/TAES.2004.1292174

18. Lesnik, C., "Nonlinear frequency modulated signal design," Acta Physica Polonica A, Vol. 116, No. 3, 351-354, 2009.

19. Lesnik, C. and A. Kawalec, "Modification of a weighting function for NLFM radar signal designing," Acta Physica Polonica A, Vol. 114, No. 6, 143-149, 2008.

20. Luo, F., L. Ruan, and S. Wu, "Design of modified spectrum filter based on mismatched window for NLFM signal," Proceedings of IEEE APSAR Conference, 274-277, 2009.

21. Sahoo, A. K. and G. Panda, "Sidelobe reduction of LFM signal using convolutional windows," Proceedings of ICES Conference, 86-89, 2011.

22. Zakeri, B. G., M. R. Zahabi, and S. Alighale, "Sidelobes level improvement by using a new scheme used in microwave pulse compression radars," Progress In Electromagnetic Research Letters, Vol. 30, 81-90, 2012.
doi:10.2528/PIERL12011102

23. Pan, Y., S. Peng, K. Yang, and W. Dong, "Optimization design of NLFM signal and its pulse compression simulation," Proceedings of IEEE Radar Conference, 383-386, 2005.

24. Gran, F. and J. A. Jensen, "Designing NLFM signals for medical ultrasound imaging," Proceedings of IEEE Ultrasonic Symposium, 1714-1717, 2006.

25. Jakabosky, J., P. Anglin, M. Cook, S. D. Blunt, and J. Stiles, "Nonlinear FM waveform design using marginal Fisher's information within the CPM framework," Proceedings of IEEE Radar Conference, 513-518, 2011.

26. Duh, F. B., C. F. Juang, and C. T. Lin, "A neural fuzzy network approach to radar pulse compression," IEEE Geoscience and Remote Sensing Letters, Vol. 1, No. 1, 15-19, 2004.
doi:10.1109/LGRS.2003.822310

27. Saeedi, H., M. R. Ahmadzadeh, and M. R. Akhavan, "Application of neural network to pulse compression," Proceedings of IET International Conference on Radar Systems, 1-6, 2007.

28. Wang, P., H. Meng, and X. Wang, "Suppressing autocorrelation sidelobes of LFM pulse trains with genetic algorithm," Tsinghua Science and Technology Journal, Vol. 13, No. 6, 800-806, 2008.
doi:10.1016/S1007-0214(08)72203-X