Vol. 50

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-05-16

A Millimeter-Wave Wideband High-Gain Antenna Based on the Fabry-Perot Resonator Antenna Concept

By Yuehe Ge and Can Wang
Progress In Electromagnetics Research C, Vol. 50, 103-111, 2014
doi:10.2528/PIERC14032002

Abstract

A compact millimeter-wave (MMW) wideband high-gain antenna is proposed and implemented. The development is based on the design principle of wideband Fabry-Perot resonator antennas (FPRAs). The antenna consists of three dielectric slabs and a PEC ground, and it is fed by a rectangular waveguide. All slabs are used to form the superstrate that exhibits the increasing reflection phase at the designed frequency band. Size reduction of the superstrate is carried out to enhance the bandwidth of the antenna. The effect of ground size and resonant frequency shift due to size reduction of the superstrate were studied. A wide bandwidth of over 30% was finally obtained, and measurements of the fabricated prototype validate the theory and simulation results.

Citation


Yuehe Ge and Can Wang, "A Millimeter-Wave Wideband High-Gain Antenna Based on the Fabry-Perot Resonator Antenna Concept," Progress In Electromagnetics Research C, Vol. 50, 103-111, 2014.
doi:10.2528/PIERC14032002
http://www.jpier.org/PIERC/pier.php?paper=14032002

References


    1. Trentini, G. V., "Partially reflecting sheet array," IRE Trans. on Antennas Propagat., Vol. 4, No. 10, 666-671, Oct. 1956.

    2. Jackson, D. R. and N. Alexopoulos, "Gain enhancement methods for printed circuits antennas," IEEE Trans. on Antennas Propagat., Vol. 33, No. 9, 976-987, Sep. 1985.
    doi:10.1109/TAP.1985.1143709

    3. Weily, A. T., S. Bird, and Y. J. Guo, "A reconfigurable high-gain partially reflecting surface antenna," IEEE Trans. on Antennas Propagat., Vol. 56, No. 11, 3382-3390, Nov. 2008.
    doi:10.1109/TAP.2008.2005538

    4. Weily, A., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1D EBG resonator antenn," Microw. Opt. Technol. Lett., Vol. 47, No. 2, 107-114, Oct. 2005.
    doi:10.1002/mop.21095

    5. Al-Tarifi, M. A., D. E. Anagnostou, A. K. Amert, and K. W. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. on Antennas Propagat., Vol. 61, No. 4, 1898-1908, Apr. 2013.
    doi:10.1109/TAP.2012.2231931

    6. Feresidis, P. and J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed," Proc. EuCAP 2006, 1-5, Nice, France, 2006.

    7. Boutayeb, H., T. A. Denidni, and M. Nedil, "Bandwidth widening techniques for directive antennas based on partially re°ecting surfaces," Progress In Electromagnetics Research, Vol. 74, 407-419, 2007.
    doi:10.2528/PIER07060905

    8. Moustafa, L. and B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications," IEEE Antennas Wireless Propagat. Lett., Vol. 7, 693-696, 2008.
    doi:10.1109/LAWP.2008.2009076

    9. Wang, N.-Z., C. Zhang, Q.-S. Zeng, N.-Q.Wang, and X.-J. Dong, "New dielectric 1D EBG structure for the design of wideband resonator antennas," Progress In Electromagnetics Research, Vol. 141, 233-248, 2013.
    doi:10.2528/PIER13061207

    10. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. on Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
    doi:10.1109/TAP.2011.2173113

    11. Ge, Y., K. P. Esselle, and T. S. Bird, "A method to design dual-band, high-directivity EBG resonator antennas using single-resonant, single-layer partially reflective surface," Progress In Electromagnetics Research C, Vol. 13, 245-257, 2010.
    doi:10.2528/PIERC10020901

    12. Zeb, A., Y. Ge, K. P. Esselle, Z. Sun, and M. E. Tobar, "A simple dual-band electromagnetic band gap resonator antenna based on inverted re°ection phase gradient," IEEE Trans. on Antennas Propagat., Vol. 60, No. 10, 4522-4529, Oct. 2012.
    doi:10.1109/TAP.2012.2207331

    13. Lee, Y., X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, "Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Trans. on Antennas Propagat., Vol. 57, No. 10, 2893-2903, Oct. 2009.

    14. Hosseini, S. A., F. Capolino, and F. D. Flaviis, "A 44 GHz single-feed Fabry-Perot cavity antenna designed and fabricated on quartz," IEEE Antennas and Propagation Society (AP-S) International Symposium, 1285-1288, Spokane, Washington, USA, Jul. 3-8, 2011.

    15. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Microw. Antennas Propagat., Vol. 148, No. 6, 345-350, 2001.
    doi:10.1049/ip-map:20010828

    16. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. on Antennas Propagat., Vol. 53, No. 1, 224-235, Jan. 2005.
    doi:10.1109/TAP.2004.840521