In this paper, a dual-band Substrate Integrated Waveguide (SIW) resonator with Sierpinski fractal geometry is proposed. The space-filling property of the employed fractal shape allows to reduce the resonator size. The bandwidth, the minimum insertion loss, the maximum return loss and the stop band rejection are considered for evaluating the effect of the fractal geometry on the resonator characteristics. An accurate electromagnetic investigation is made using a full wave finite element method solver (Ansoft HFSS). Simulated and measured results are in good agreement. The second iteration fractal resonator exhibits two simulated bands centered at the frequencies f1=11.57 GHz and f2=25.7 GHz, while the measured frequencies are f1=11.33 GHz, f2=23.67 GHz. The measured bandwidths are BW=1.15 GHz and BW=2 GHz and the minimum insertion losses are close to -1.36 dB and -1.97 dB, respectively. The prototypes of the square resonator without, with first and with second iteration fractal geometry are fabricated via standard printed circuit board process (PCB). A Rogers Duroid 5880 substrate with thickness t=0.381 mm is employed.
2. Hao, Z. C., W. Hong., J. X. Chen, H. X. Zhou, and K. Wu, "Single-layer substrate integrated waveguide directional couplers," IEE Proc. Microw. Antennas Propag., Vol. 153, No. 5, 426-431, Oct. 2006.
3. Kazemi, R., A. E. Fathy, S. Yang, and R. A. Sadeghzadeh, "Development of an ultra wide band GCPW to SIW transition," 2012 IEEE Radio and Wireless Symposium (RWS), 171-174, 2012.
doi:10.1109/RWS.2012.6175308
4. Cong, Z., P. Wang, and P. Li, "Analysis and experiment of transition between micro-strip and a miniaturization substrate integrated waveguide (SIW)," 7th International Symposium on Antennas, Propagation & EM Theory, ISAPE’06, 1-4, Oct. 2006.
5. Bozzi, M., L. Perregrini, K. Wu, and P. Arcioni, "Current and future research trends in substrate integrated waveguide technology," Radio Engineering, Vol. 18, No. 2, 201-209, Jun. 2009.
6. Sabariah, S., B. H. Ahmad, and A. R. B. Othman, "A review of substrate integrated waveguide (SIW) bandpass filter based on different method and design," IEEE APACE, 210-215, Dec. 2012.
7. Tang, H. J., W. Hong, Z. C. Hao, J. X. Chen, and K. Wu, "Optimal design of compact millimetre-waveSIW circular cavity filters," Electronics Letters, Vol. 41, No. 19, 2005.
8. Chen, X. P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. on Microwave Theory and Techniques, Vol. 56, No. 1, 142-149, 2008.
9. Zhang, Y. L., W. Hong, K. Wu, J. X. Chen, and Z. C. Hao, "Development of compact bandpass filters with SIW triangular cavities," IEEE APMC, 2005.
10. Xiao, J. K. and X. P. Zu, "Dual-band bandpass filter using right-angled triangular resonator," IEEE Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, 690-695, 2011.
11. Szydlowiski, L., A. Lamecki, and M. Mrozowski, "Coupled-resonator waveguide filter in quadruplet topology with frequency-dependent coupling — A design based on coupling matrix," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 11, 553-555, Nov. 2012.
doi:10.1109/LMWC.2012.2225604
12. Szydlowiski, L., A. Lamecki, and M. Mrozowski, "A novel coupling matrix synthesis technique for generalized Chebyshev filters with resonant source-load connection," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 10, 3568-3577, Oct. 2013.
doi:10.1109/TMTT.2013.2280113
13. Szydlowski, L., N. Leszczynska, A. Lamecki, and M. Mrozowski, "A substrate integrated waveguide (SIW) bandpass filter in a box configuration with frequency-dependent coupling," IEEE Microwave and Wireless Component Letters, Vol. 22, No. 11, 556-558, Nov. 2012.
14. Sun, S. J., T. Su, K. Deng, B. Wu, and C. H. Liang, "Compact microstrip dual-band bandpass filter using a novel stub-loaded quad-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 9, 465-467, Sep. 2013.
doi:10.1109/LMWC.2013.2274038
15. Kufa, M. and Z. Raida, "Lowpass filter with reduced fractal defected ground structure," Electronics Letters, Vol. 49, No. 3, Jan. 2013.
doi:10.1049/el.2012.3473
16. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research M, Vol. 28, 229-244, 2013.
doi:10.2528/PIERM12121903
17. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402
18. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, New York, 1977.
19. Xiao, J.-K., X.-P. Zu, X. Li, and L. Tian, "Right-angled triangular patch resonator and filter with fractal hole," Progress In Electromagnetics Research B, Vol. 40, 141-158, 2012.
doi:10.2528/PIERB12020608
20. Liu, B., Y. S. Mezaal, H. T. Eyyuboglu, and K. A. Jawad, "New dual band dual-mode microstrip patch bandpass filter designs based on Sierpinski fractal geometry," 3rd International Conference on Advanced Computing and Communication Technologies (ACCT-2013), 2013.
21. Liu, B., W. Hong, Y. Zhang, H. J. Tang, X. Yin, and K. Wu, "Half mode substrate integrated waveguide 180◦ 3-dB directional couplers," IEEE Transactions on Microwaves Theory and Tecniques, Vol. 55, No. 12, 2586-2592, Dec. 2007.
22. Zhang, Z., N. Yang, and K. Wu, "5-GHz bandpass filter demonstration using quarter-mode substrate integrated waveguide cavity for wireless systems," IEEE, 95-97, 2009.
23. Yang, G., W. Liu, and F. Liu, "A compact C-band bandpass filter using one eighth substrate integrated waveguide resonator," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), Vol. 2, 1-4, 2012.
24. Jin, C. and Z. Shen, "Compact triple-mode filter based on quarter-mode substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 1, 37-45, Jan. 2014.
doi:10.1109/TMTT.2013.2293128
25. Xu, F. and K. Wu, "Guided-wave and leakeage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Tecniques, Vol. 53, No. 1, 66-73, Jan. 2005.
26. Anguerra, J., J. P. Daniel, C. Borja, J. Mumbr`u, C. Puente, T. Leduc, K. Sayegrih, and P. Van Roy, "Metallized foams for antenna design: Application to fractal-shaped Sierpinski-carpet monopole," Progress In Electromagnetics Research, Vol. 104, 239-251, 2010.
doi:10.2528/PIER10032003
27. Castellano, T., O. Losito, L. Mescia, M. A. Chiapperino, G. Venanzoni, D. Mencarelli, G. Angeloni, C. Renghini, P. Carta, and F. Prudenzano, "Feasibility investigation of low cost substrate integrated waveguide (SIW) directional couplers," Progress In Electromagnetics Research B, Vol. 59, 31-44, 2014.
doi:10.2528/PIERB14010806
28. Losito, O., et al., "X-band SIW cavity-backed patch antenna for radar applications," EuMW 2013, Nuremberg, Germany, Oct. 6–11, 2013.
29. Calo, G., A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, "Tunability of photonic band gap notch filter," IEEE Transactions on Nanotechnology, 273-284, 2008.
doi:10.1109/TNANO.2008.917848
30. D’Orazio, A., M. De Sario, V. Marocco, V. Petruzzelli, and F. Prudenzano, "Photonic crystal drop filter exploiting resonator cavity configuration," IEEE Transactions on Nanotechnology, 10-13, 2008.
doi:10.1109/TNANO.2007.913427
31. Losito, O., L. Mescia, D. Mencarelli, G. Venanzoni, and F. Prudenzano, "SIW cavity-backed patch antenna for Ku band applications," 7th European Conference on Antennas and Propagation (EUCAP 2013), 3095-3098, 2013.
32. Castellano, T., O. Losito, L. Mescia, M. A. Chiapperino, G. Venanzoni, D. Mencarelli, G. Angeloni, C. Renghini, P. Carta, P. Potenza, and F. Pru, "Substrate integrated waveguide fixed phase shifter for 90±-degree directional coupler," 2013 IEEE Proceeding International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013), 2013.