Vol. 58
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-07-01
Performance Investigations with Antipodal Linear Tapered Slot Antenna on 60 GHz Radio Link in a Narrow Hallway Environment
By
Progress In Electromagnetics Research C, Vol. 58, 69-77, 2015
Abstract
The performance of wireless communication systems is predominantly dependent on propagation environment and respective radiating antennas. Due to the shorter wavelength at Millimeter Wave (MmW) frequencies, the propagation loss through the objects in indoor environments is typically very high. To improve the channel capacity and to reduce inter-user interference, a high gain directional antenna is desired at MmW frequencies. Traditional antennas used in MmW devices are not suitable for low-cost commercial devices due to their heavy, bulky and expensive configurations. This paper focuses on design and development of a very compact (44.61 mm x 9.93 mm x 0.381 mm) high gain Antipodal Linear Tapered Slot Antenna (ALTSA) utilizing Substrate Integrated Waveguide (SIW) technology at 60 GHz. Received signal strength (RSS), path loss (PL) and capacity are studied for MmW based wireless applications utilizing ALTSA with Radio Frequency (RF) measurement equipment in narrow hallway environment.
Citation
Purva Shrivastava, and Thipparaju Rama Rao, "Performance Investigations with Antipodal Linear Tapered Slot Antenna on 60 GHz Radio Link in a Narrow Hallway Environment," Progress In Electromagnetics Research C, Vol. 58, 69-77, 2015.
doi:10.2528/PIERC15052104
References

1. Yong, S. K., P. Xia, and A. V. Garcia, 60GHz Technology for Gbps WLAN and WPAN, 1st Edition, John Wiley and Sons Ltd., Chichester, UK, 2011.

2. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," IEEE Proc., Vol. 99, No. 8, 1390-1436, Aug. 2011.
doi:10.1109/JPROC.2011.2143650

3. Smulders, P., "Exploiting the 60GHz band for local wireless multimedia access: Prospects and future directions," IEEE Commuunication Magazine, Vol. 2, No. 1, 140-147, Jan. 2002.
doi:10.1109/35.978061

4. Huang, K. C. and D. J. Edwards, Millimetre Wave Antennas for Gigabit Wireless Communications, 1st Edition, John Wiley, Chichester, UK, 2008.
doi:10.1002/9780470712467

5. Namas, T. and M. Hasanovic, "Ultrawideband antipodal Vivaldi antenna for road surface scanner based on inverse scattering," Proc. of 28th Annual Review of Progress in Applied Computational Electromagnetics, 882-887, Ohio, 2012.

6. Coburn, W. K. and A. I. Zaghloul, "Numerical analysis of stacked tapered slot antennas," Proc. 28th Annual Review of Progress in Applied Computational Electromagnetics, 112-117, Ohio, 2012.

7. Chang, D. C., B. H. Zeng, and J. C. Liu, "Modified antipodal Fermi antenna with piecewise-linear approximation and shaped-comb corrugation for ranging applications," IET Microwaves, Antennas and Propagation, Vol. 4, No. 3, 399-407, Mar. 2010.
doi:10.1049/iet-map.2009.0003

8. Rodenbeck, C. T., S. G. Kim, W. H. Tu, M. R. Coutant, S. Hong, M. Li, and K. Chang, "Ultrawideband low cost phased array radars," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 12, 3697-3703, Dec. 2005.
doi:10.1109/TMTT.2005.856668

9. Sugawara, S., Y. Maita, K. Adachi, and K. Mizuno, "Characteristics of a mm-wave tapered slot antenna with corrugated edges," IEEE MTT-S International Microwave Symposium Digest, 533-536, Baltimore, 1998.

10. Djerafi, T. and K. Wu, "Corrugated substrate integrated waveguide (SIW) antipodal linearly tapered slot antenna array fed by quasi-triangular power divider," Progress In Electromagnetics Research C, Vol. 26, 139-151, 2012.
doi:10.2528/PIERC11091912

11. Bozzi, M., L. Perregrini, K. Wu, and P. Arcioni, "Current and future research trends in substrate integrated waveguide technology," Radioengineering, Vol. 18, No. 2, 201-206, 2009.

12. Hao, Z. C., W. Hong, J. X. Chen, X. P. Chen, and K. Wu, "A novel feeding technique for antipodal linearly tapered slot antenna array," IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1641-163, China, 2003.

13. Huang, T. J. and T. H. Heng, "Antipodal dual exponentially tapered slot antenna (DETSA) with stepped edge corrugations for front-to-back ratio improvement," Proc. of IEEE International Workshop on Electromagnetics, Applications and Student Innovation (iWEM), 48-51, Taipei, Aug. 2011.
doi:10.1109/iWEM.2011.6021477

14. Yoon, D. G., Y. P. Hong, Y. J. An, J. S. Jang, U. Y. Pak, and J. G. Yook, "High-gain planar tapered slot antenna for Ku-band applications," Proc. of IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 1914-1917, Yokohama, 2010.

15. Shrivastava, P., D. Chandra, N. Tiwari, and T. R. Rao, "Investigations on corrugation issues in SIW based antipodal linear tapered slot antenna for wireless networks at 60GHz," Applied Computational Electromagnetics Society ACES, Vol. 28, No. 10, 960-968, Oct. 2013.

16. Vettikalladi, H., O. Lafond, and M. Himdi, "High-Efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Letters on Antennas and Propagation, Vol. 8, 1422-1425, Jan. 2010.

17. Ghosh, T. A., M. C. Thomas, R. Cudak, P. Ratasuk, F. Moorut, W. Vook, T. S. Rappaport, G. R. MacCartney, S. Sun, and S. Nie, "Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 6, 1152-1163, Jun. 2014.
doi:10.1109/JSAC.2014.2328111

18. Maltsev, A. R., A. Maslennikov, A. Evastyanov, A. Khoryaev, and A. Lomayev, "Experimental investigations of 60 GHz WLAN systems in office environment," IEEE Journal on Selected Areas in Communications, Vol. 27, No. 8, 1488-1499, Oct. 2009.
doi:10.1109/JSAC.2009.091018

19. Ellis, T. J. and G. M. Rebeiz, "Mm-wave tapered slot antennas on micromachined photonic bandgap dielectrics," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1157-1160, San Francisco, Jun. 1996.

20. Yoon, D. G., Y. P. Hong, Y. J. An, J. S. Jang, U. Y. Park, and J. G. Yook, "Broadband high-gain linearly tapered slot antenna with outside corrugations," IEICE Electronics Express, Vol. 8, No. 4, 202-208, 2011.
doi:10.1587/elex.8.202

21. Wang, W., X. Wang, W. Wang, and A. E. Fathy, "Planar high-gain antipodal linearly tapered slot antenna for passive millimeter-wave focal plane array imaging," IEEE International Symposium on Phased Array Systems & Technology, 267-271, Waltham, MA, USA, Oct. 2013.

22. Ismail, M. and A. R. Sebak, "High-gain SIW-based antipodal linearly tapered slot antenna for 60-GHz applications," IEEE Antennas and Propagation Society International Symposium (APSURSI), 217-218, Memphis, Tennessee, USA, Jun. 2014.

., http://www.remcom.com/wireless-insite.

24. Yang, K. S., S. T. Choi, S. Nishi, K. Tokuda, and Y. H. Kim, "60GHz high integrated transceiver for broad band short distance communication," Proc. of URSI GA 2005, C-06, 2005, Access Mode: http://www.ursi.org/Proceedings/ProcGA05/pdf/C06.4%2801679%29.pdf.

25., http://www.keysight.com/en/pd-797248-pn-N5182A/mxg-rf-vectorsignal-generator?&cc=IN&lc=eng.

26., http://cp.literature.agilent.com/litweb/pdf/5989-6529EN.pdf.

27. Suiyan, G., "Performance and capacity analysis of 60GHz WPAN channel," Microwave and Optical Technology Letters, Vol. 51, No. 11, 2671-2675, 2009.
doi:10.1002/mop.24698

28. Yong, S. K. and C. C. Chong, "An overview of multi gigabit wireless through millimeter wave technology: Potentials and technical challenges," EURASIP Journal on Wireless Communications and Networking, Vol. 2007, Article ID 78907, 2007.

29. Liu, C. E., R. Skafidas, and R. J. Evans, "Capacity and data rate for millimeter wavelength systems in a short range package radio transceiver," IEEE Transactions on Wireless Communications, Vol. 9, No. 9, 903-906, Mar. 2010.
doi:10.1109/TWC.2010.03.090060

30. Kumar, A. and T. R. Rao, "Analysis of planning and deployment issues for short-range gigabit wireless communications at 60GHz," International Journal of Microwave and Optical Technology, Vol. 9, No. 2, 156-163, Mar. 2014.

31. Ramesh, S. and T. R. Rao, "Indoor radio link characterization studies for millimeter wave wireless communications utilizing dielectric loaded exponentially tapered slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 4, 551-564, 2015.
doi:10.1080/09205071.2015.1011349