Vol. 59
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-09-24
Bandpass Filters with Mixed Hairpin and Patch Resonators
By
Progress In Electromagnetics Research C, Vol. 59, 101-106, 2015
Abstract
This paper presents a new implementation technique of transmission zeros in an in-line coupled filter. Neither cross couplings between non-adjacent resonators nor separate side-line resonators have been used. Instead a mixture of single-mode hairpin resonators and dual-mode patch resonators have been adopted in a bandpass filter with one asymmetric transmission zero. The introduction of the patch led to an improved frequency selectivity through an independently controllable transmission zero. This approach has been verified by a three-pole filter at 2.6 GHz with 8% bandwidth and a transmission zero at 2.4 GHz. Good agreement has been shown between the measurements and the simulation.
Citation
Eugene Amobichukwu Ogbodo Yi Wang Predrag B. Rapajic , "Bandpass Filters with Mixed Hairpin and Patch Resonators," Progress In Electromagnetics Research C, Vol. 59, 101-106, 2015.
doi:10.2528/PIERC15072905
http://www.jpier.org/PIERC/pier.php?paper=15072905
References

1. Meng, M. and I. Hunter, "The design of parallel connected filter networks with non-uniform Q resonators," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 61, No. 1, 372-381, June 17-22, 2012.

2. Yusuf, Y. and X. Gong, "Compact low-loss integration of high-3-D filters with highly efficient antennas," IEEE Trans. Microw. Theo. Techn., Vol. 59, No. 4, 857-865, April 2011.
doi:10.1109/TMTT.2010.2100407

3. Mao, C. X., S. Gao, Z. P. Wang, Y. Wang, F. Qin, B. Sanz-Izquierdo, and Q. X. Chu, "Integrated filtering-antenna with controllable frequency bandwidth," 9th Europ. Conf. on Antennas and Propagation (EuCAP), April 12-17, 2015.

4. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2011.
doi:10.1002/9780470937297

5. Liao, C. and C. Chang, "Design of microstrip quadruplet filters with source-load coupling," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 7, 2302-2308, July 2005.
doi:10.1109/TMTT.2005.850442

6. Rhodes, J. and R. Cameron, "General extracted pole synthesis technique with applications to low-loss TE011 mode filters," IEEE Trans. Microwave Theory and Techniques, Vol. 28, No. 9, 1018-1028, September 1980.
doi:10.1109/TMTT.1980.1130213

7. Macchiarella, G. and M. Politi, "Use of generalized coupling coefficients in the design of extracted-poles waveguide filters with non-resonating nodes," IEEE MTT-S Int. Microw. Symp. Dig., 1341-1344, June 2009.

8. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.
doi:10.2528/PIER12061510

9. Yeo, K., M. Lancaster, and J. Hong, "The design of microstrip six-pole quasi-elliptic filter with linear phase response using extracted-pole technique," IEEE Trans. Microwave Theory and Technique, Vol. 40, No. 2, 321-327, 2001.
doi:10.1109/22.903092