Vol. 59
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-09-28
Synthesis of Generalized Chebyshev Lossy Bandstop Filters with Non-Paraconjugate Transmission Zeros
By
Progress In Electromagnetics Research C, Vol. 59, 107-116, 2015
Abstract
A systematic procedure is presented for synthesis of generalized Chebyshev lossy bandstop filters with nonparaconjugate transmission zeros. From a lossy scattering parameters with the prescribed reflection zeros, the transformation formulas from the scattering matrix to the admittance matrix are obtained by reconstructing the non paraconjugate transmission zeros as paraconjugate ones. The canonical transversal array is modeled by partial fraction expansion of the normalized admittance functions, resulting in an increased order of the final network provided there are nonparaconjugate transmission zeros. The methods are simpler and more general than the ones in the literature. So it shows great versatility, and can also accommodate lossless network or a transfer function with symmetrical transmission zeros. To illustrate the proposed synthesis procedure, three typical examples have been carried out to validate the synthesis method.
Citation
Guo Hui Li , "Synthesis of Generalized Chebyshev Lossy Bandstop Filters with Non-Paraconjugate Transmission Zeros," Progress In Electromagnetics Research C, Vol. 59, 107-116, 2015.
doi:10.2528/PIERC15082001
http://www.jpier.org/PIERC/pier.php?paper=15082001
References

1. Yu, M. and V. Miraftab, "Shrinking microwave filters," IEEE Microwave Magazine, Vol. 9, No. 5, 40-54, 2008.
doi:10.1109/MMM.2008.927636

2. Guyette, A., I. Hunter, and R. Pollard, "The design of microwave bandpass filters using resonators with nonuniform," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3914-3922, 2006.
doi:10.1109/TMTT.2006.884627

3. Miraftab, V. and M. Yu, "Advanced coupling matrix and admittance function synthesis techniques for dissipative microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 10, 2429-2438, 2009.
doi:10.1109/TMTT.2009.2029625

4. Miraftab, V. and M. Yu, "Generalized lossy microwave filter coupling matrix synthesis and design using mixed technologies," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 3016-3027, 2008.
doi:10.1109/TMTT.2008.2008267

5. Navarro-Tapia, D., E. Sorolla, P. Otero, and M. Mattes, "Coupling matrix synthesis of dissipative microwave filters," IET Microwaves, Antennas and Propagation, Vol. 5, No. 8, 895-900, 2011.
doi:10.1049/iet-map.2010.0335

6. Oldoni, M., G. Macchiarella, G. Gentili, and C. Ernst, "A new approach to the synthesis of microwave lossy filters," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 5, 1222-1229, 2010.
doi:10.1109/TMTT.2010.2045534

7. Szydlowski, L., A. Lamecki, and M. Mrozowski, "Synthesis of coupled-lossy resonator filters," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 7, 366-368, 2010.
doi:10.1109/LMWC.2010.2049424

8. Zhao, Y. and G. Wang, "Multi-objective optimisation technique for coupling matrix synthesis of lossy filters," IET Microw. Antennas Propag., Vol. 7, No. 11, 926-933, 2013.
doi:10.1049/iet-map.2012.0643

9. Zhang, Q. and C. Caloz, "Alternative construction of the coupling matrix of filters with non-paraconjugate transmission zeros," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 10, 509-511, 2013.
doi:10.1109/LMWC.2013.2278275

10. Cameron, R., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

11. Cameron, R., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 433-442, 1999.
doi:10.1109/22.754877