Vol. 59
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-10-14
Ground Slotted Monopole Antenna Design for Microwave Breast Cancer Detection Based on Time Reversal MUSIC
By
Progress In Electromagnetics Research C, Vol. 59, 117-126, 2015
Abstract
In this manuscript, a reduced size, ground slotted monopole antenna, operating in the range of 3.1-10.6 GHz is designed and implemented for breast cancer detection using time reversal MUSIC. A homemade breast mimicking phantom has been experimentally designed to facilitate the detection implementation. The simulated and measured results are in good agreement. The slots and blending edges of the ground, along with the feed step are some techniques applied to the designed antenna in order to achieve a broad bandwidth and reduce considerably the reflection coefficient. The resulting dielectric constant from the breast phantom is relatively close to the real normal breast tissues. After the design has been completed, some techniques of time reversal MUSIC were employed to mimic the breast cancer detection. The experimental results show that both temporal and spatial images of the cancer (tumor) are well represented here.
Citation
Mamadou Hady Bah Jingsong Hong Deedar Ali Jamro , "Ground Slotted Monopole Antenna Design for Microwave Breast Cancer Detection Based on Time Reversal MUSIC," Progress In Electromagnetics Research C, Vol. 59, 117-126, 2015.
doi:10.2528/PIERC15082904
http://www.jpier.org/PIERC/pier.php?paper=15082904
References

1. Sajjadieh, M., F. Foroozan, and A. Asif, "Breast cancer detection using time reversal signal processing," IEEE 13th International. Multi-optic Conference, 2009, INMIC, 2009.

2. Nadine Joachimowicz, N., C. Conessa, T. Henriksson, and B. Duchene, "Breast phantoms for microwave imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1333-1336, 2014.
doi:10.1109/LAWP.2014.2336373

3. Hossain, M. D. and A. S. Mohan, "Breast cancer localization in three dimensions using time reversal DORT method," 2012 International Symposium on Antennas and Propagation (ISAP), 471-474, 2012.

4. Jin, Y. W., J. M. F. Moura, and Y. Jiang, "Breast cancer detection by time reversal imaging," 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, 816-819, 2008.

5. Shao, W. and R. S. Adams, "Two antipodal vivaldi antennas and an antenna array for microwave early breast cancer detection," Microwave and Optical Technology Letters, Vol. 55, 670-674, Mar. 2013.
doi:10.1002/mop.27384

6. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiograph, Vol. 18, No. 5, 1137-1154, 1998.
doi:10.1148/radiographics.18.5.9747612

7. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, 812-822, Aug. 2002.
doi:10.1109/TBME.2002.800759

8. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten-year risk of false positive screening mammograms and clinical breast examinations," New Eng. J. Med., Vol. 338, No. 16, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601

9. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumour detection with nearfield imaging," IEEE Microwave Magazine, Vol. 3, No. 1, 48-56, Mar. 2002.
doi:10.1109/6668.990683

10. Carr, K. L., "Microwave radiometry: Its importance to the detection of cancer," IEEE Trans. Microwave Theory Tech., Vol. 37, 1862-1869, Dec. 1989.
doi:10.1109/22.44095

11. Bocquet, B., J. C. van de Velde, A. Mamouni, Y. Leroy, G. Giaux, J. Delannoy, and D. Del Valee, "Microwave radiometric imaging at 3GHz for the exploration of breast tumors," IEEE Trans. Microwave Theory Tech., Vol. 38, 791-793, Jun. 1990.
doi:10.1109/22.130978

12. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian J. Biochem. Biophys, Vol. 21, 76-79, Feb. 1984.

13. Surowiec, J., S. S. Stuchly, J. R. Barr, and A. Swarup, "Dielectric properties of breast carcinoma and the surrounding tissues," IEEE Trans. Biomed. Eng., Vol. 35, 257-263, Apr. 1988.
doi:10.1109/10.1374

14. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultra-wideband microwave applications," Physic. Medicine Biology, Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001

15. Madsen, E. L., J. A. Zagzebski, and G. R. Frank, "Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials," Ultrasound in Medicine and Biology, Vol. 8, 277-287, 1982.
doi:10.1016/0301-5629(82)90034-5

16. Abbosh, A. M. and M. E. Bialkowski, "Design of ultra-wideband planar monopole antennas of circular and elliptical shape," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 17-23, 2008.
doi:10.1109/TAP.2007.912946

17. Fink, M., "Time reversed acoustics," Physics Today, Vol. 50, 34, 40, 1997.

18. Jin, Y., Y. Jiang, and J. M. F. Moura, "Time reversal beamforming for microwave breast cancer detection," IEEE International Conferences on Image Processing, Vol. 5, V-13-V-16, San Antonio, Texas, Sep. 16-19, 2007.

19. Yavuz, M. and F. Teixeira, "Ultra wide band microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 9, 466-495, 2009.
doi:10.3390/rs1030466

20. Yavuz, M. E. and F. L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 9, 466-495, 2009.
doi:10.3390/rs1030466

21. Hossain, M. D., F. Yang, M. J. Abedin, and A. S. Mohan, "Time reversal microwave imaging for the localization and classification of early stage breast cancer," Proceedings of the Asia-Pacific Microwave Conference, 477, 2011-978-0-85825-974-4c2011, Engineers Australia, 2011.

22. Salvador, S. M. and G. Vecchi, "Experimental tests of microwave breast cancer detection on phantoms," IEEE Trans. Antennas Propag., Vol. 57, 1705-1712, Jun. 2009.
doi:10.1109/TAP.2009.2019901