Vol. 60

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-11-23

Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure

By Taulant Rexhepi, Igor Bendoym, Ada-Simona Popescu, Andrii Golovin, Johnny Daniels, Kate Duncan, and David Crouse
Progress In Electromagnetics Research C, Vol. 60, 11-20, 2015
doi:10.2528/PIERC15090906

Abstract

In this work, a low-profile metamaterial backed planar antenna structure designed to work in the UHF/VHF range is presented. The antenna has right-hand circular polarization. It is ideal for satellite-based communications and radar systems. An artificial magnetic conductor was designed using a metamaterial composed of a split ring resonators to reduce the size of the planar antenna and ground plane system. The proposed artificial magnetic conductor has more confined surface waves at the reflecting plane than previous designs and is suitable for circular polarization. Through numerical simulations, performance characteristics including return-loss, and realized gain of the antenna systems are calculated and analyzed in the VHF range. The proposed antenna system is narrowband and is linearly scalable in the range of 100 MHz-1 GHz.

Citation


Taulant Rexhepi, Igor Bendoym, Ada-Simona Popescu, Andrii Golovin, Johnny Daniels, Kate Duncan, and David Crouse, "Low Profile UHF/VHF Metamaterial Backed Circularly Polarized Antenna Structure," Progress In Electromagnetics Research C, Vol. 60, 11-20, 2015.
doi:10.2528/PIERC15090906
http://www.jpier.org/PIERC/pier.php?paper=15090906

References


    1. Dan, S., et al., "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Tech., Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    2. Sievenpiper, D. F., J. H. Schaffner, H. J. Song, R. Y. Loo, and G. Tangonan, "Two-dimensional beam steering using an electrically tunable impedance surface," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2713-2722, 2003.
    doi:10.1109/TAP.2003.817558

    3. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "A high-impedance ground plane applied to a cellphone handset geometry," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 7, 1262-1265, 2001.
    doi:10.1109/22.932245

    4. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
    doi:10.1109/LAWP.2008.2006070

    5. Suh, S.-Y., et al., "Evolution of broadband antennas from monopole disc to dual-polarized antenna," IEEE Antennas and Propagation Society International Symposium, 2006.

    6. Liu, Y., et al., "A novel dual-polarized dipole antenna with compact size for wireless communication," Progress In Electromagnetics Research, Vol. 40, 217-227, 2013.
    doi:10.2528/PIERC13041610

    7. Suh, S.-Y., et al., "An novel broadband antenna, the low profile dipole planar inverted cone antenna (LPdiPICA)," IEEE Antennas and Propagation Society International Symposium, 2004.

    8. Suh, S.-Y., et al., "A novel printed dual polarized broadband antenna-the fourclover antenna," Proceedings of ISAP'04, Sendai, Japan, 2004.

    9. Balanis, C., Antenna Theory, Analysis, and Design, 2nd Ed., New Jersey, Wiley, USA, 2005.

    10. Oh, S.-S. and L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave and Optical Technology Letters, Vol. 48, No. 2, 329-334, 2006.
    doi:10.1002/mop.21341

    11. Huang, Y., et al., "Enhancement of radiation along the ground plane from a horizontal dipole located close to it," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 294-297, 2008.
    doi:10.1109/LAWP.2008.922141

    12. Kärkkäinen, M. and P. Ikonen, "Patch antenna with stacked split-ring resonators as an artificial magneto-dielectric substrate," Microwave and Optical Technology Letters, Vol. 46, No. 6, 554-556, 2005.
    doi:10.1002/mop.21048

    13. Zhu, S., K. L. Ford, A. Tennant, and R. J. Langley, "SRR driven miniaturized dipole antenna with loaded AMC surface," ESA Conference 2010, [Online]. Available: http://utopia.duth.gr/~iaitidis/ESA%20conference%202010/Papers/session%2011/FCXNL-10C09-1982541-1-1982541zhu.pdf.

    14. Erentok, A., P. L. Luljak, and R. W. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Trans. Antennas and Propagation, Vol. 53, No. 1, 160-172, 2005.
    doi:10.1109/TAP.2004.840534

    15. Sohn, J. R., K. Y. Kim, H.-S. Tae, and H. J. Lee, "Comparative study on various artficial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
    doi:10.2528/PIER06011701

    16. Ayad, H., et al., "Performances of low profile dipole antenna AMC-based surface using metamaterials structures," 2012 IEEE 19th International Conference on Telecommunications (ICT), 2012.

    17. Baracco, J.-M., L. Salghetti-Drioli, and P. de Maagt, "AMC low profile wideband reference antenna for GPS and GALILEO systems," IEEE Trans. Antennas and Propagation, Vol. 56, No. 8, 2540-2547, 2008.
    doi:10.1109/TAP.2008.927547

    18. Carrubba, E., A. Monorchio, and G. Manara, "Artificial magnetic surface for circularly polarized antennas," IEEE Antennas and Propagation Society International Symposium, 2009, APSURSI'09, 1-4, 2009.
    doi:10.1109/APS.2009.5171631

    19. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas and Propagation, Vol. 55, No. 8, 2258-2267, 2007.
    doi:10.1109/TAP.2007.901950

    20. Shen, X., et al., "Polarization-independent wide-angle triple-band metamaterial absorber," Optics Express, Vol. 19, No. 10, 9401-9407, 2011.
    doi:10.1364/OE.19.009401

    21. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
    doi:10.1109/TAP.2010.2044329

    22., "Dual-layer EBG structures for low profile bent antenna," Progress In Electromagnetics Research B, Vol. 47, 315-337, 2013.

    23. Li, Y., et al., "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
    doi:10.1109/TMTT.2004.839322

    24. Balanis, C., Advanced Engineering, Electromagnetics, Analysis, and Design, 2nd Ed., Wiley, USA, New York, 2012.

    25. Costa, F., et al., "An active high-impedance surface for low-profile tunable and steerable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 676-680, 2008.
    doi:10.1109/LAWP.2008.2006070

    26. Gregoire, D. J., C. R. White, and J. S. Colburn, "Wideband artificial magnetic conductors loaded with non-Foster nega-tive inductors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1586-1589, 2011.
    doi:10.1109/LAWP.2011.2181937

    27. Murakami, Y., T. Hori, and M. Fujimoto, "Optimum reflector configuration for dipole antenna by using artificial magnetic conductor," IEEE 2013 International Workshop on Antenna Technology (iWAT), 2013.

    28. Simovski, C. R., P. de Maagt, and I. V. Melchako-va, "High-impedance surfaces having stable resonance with respect to polarization and incidence angle," IEEE Trans. Antennas and Propagation, Vol. 53, No. 3, 908-914, 2005.
    doi:10.1109/TAP.2004.842598