Vol. 62
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-03-04
Design and Simulation of Fully Printable Conformal Antennas with BST/Polymer Composite Based Phase Shifters
By
Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016
Abstract
A fully printable and conformal antenna array on a flexible substrate with a new Left-Handed Transmission Line (LHTL) phase shifter based on a tunable Barium Strontium Titanate (BST)/polymer composite is proposed and computationally studied for radiation pattern correction and beam steering applications. First, the subject 1×4 rectangular patch antenna array is configured as a curved conformal antenna, with both convex and concave bending profiles, and the effects of bending on the performance are analyzed. The maximum gain of the simulated array is reduced from the flat case level by 34.4% and 34.5% for convex and concave bending, respectively. A phase compensation technique utilizing the LHTL phase shifters with a coplanar design is used to improve the degraded radiation patterns of the conformal antennas. Simulations indicate that the gain of the bent antenna array can be improved by 63.8% and 68% for convex and concave bending, respectively. For the beam steering application, the proposed phase shifters with a microstrip design are used to steer the radiation beam of the antenna array, in planar configuration, to both negative and positive scan angles, thus realizing a phased array antenna.
Citation
Mahdi Haghzadeh, Hamzeh M. Jaradat, Craig Armiento, and Alkim Akyurtlu, "Design and Simulation of Fully Printable Conformal Antennas with BST/Polymer Composite Based Phase Shifters," Progress In Electromagnetics Research C, Vol. 62, 167-178, 2016.
doi:10.2528/PIERC15091504
References

1. Seok, S. and J. Kim, "Design, fabrication, and characterization of a wideband 60 GHz bandpass filter based on a flexible PerMX polymer substrate," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, No. 8, 1384-1389, 2013.
doi:10.1109/TCPMT.2013.2240040

2. Byun, K., H. Subbaraman, X. Lin, X. Xu, and R. T. Chen, "A 3 μm channel, ink-jet printed CNTTFT for phased array antenna applications," IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-3, 2013.
doi:10.1109/WMCaS.2013.6563548

3. Wang, C., J. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey, "Extremely bendable, high-performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications," Nano Letters, Vol. 12, No. 3, 1527-1533, 2012.
doi:10.1021/nl2043375

4. Zhang, K., J.-H. Seo, W. Zhou, and Z. Ma, "Fast flexible electronics using transferrable silicon nanomembranes," Journal of Physics D: Applied Physics, Vol. 45, No. 14, 143001, 2012.
doi:10.1088/0022-3727/45/14/143001

5. Kim, S., B. Cook, T. Le, J. Cooper, H. Lee, V. Lakafosis, R. Vyas, R. Moro, M. Bozzi, A. Georgiadis, et al. "Inkjet-printed antennas, sensors and circuits on paper substrate," IET Microwaves, Antennas & Propagation, Vol. 7, No. 10, 858-868, 2013.
doi:10.1049/iet-map.2012.0685

6. Waterhouse, R. B., Printed Antennas for Wireless Communications, Wiley Online Library, 2007.
doi:10.1002/9780470512241

7. Rida, A., L. Yang, R. Vyas, and M. M. Tentzeris, "Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID andWSN applications," IEEE Antennas and Propagation Magazine, Vol. 51, No. 3, 13-23, 2009.
doi:10.1109/MAP.2009.5251188

8. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons Inc., New York, 2016.

9. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, Vol. 29, John Wiley & Sons Inc., New York, 2006.
doi:10.1002/047178012X

10. Salonen, P., J. Kim, and Y. Rahmat-Samii, "Dual-band E-shaped patch wearable textile antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 466-469, 2005.
doi:10.1109/APS.2005.1551354

11. Schippers, H., G. Spalluto, and G. Vos, "Radiation analysis of conformal phased array antennas on distorted structures," IET Conference Proceedings, Vol. 3, 160-163, Jan. 2003.

12. Knott, P., "Deformation and vibration of conformal antenna arrays and compensation techniques," Tech. Rep., FGAN-FHR Research Institute for High Frequency Physics and Radar Techniques Wachtberg, Germany, 2006.

13. Wincza, K. and S. Gruszczynski, "Influence of curvature radius on radiation patterns in multibeam conformal antennas," IEEE 36th European Microwave Conference, 1410-1413, 2006.

14. Seidel, T. J., W. S. T. Rowe, and K. Ghorbani, "Passive compensation of beam shift in a bending array," Progress In Electromagnetics Research C, Vol. 29, 41-53, 2012.
doi:10.2528/PIERC12030403

15. Braaten, B. D., S. Roy, S. Nariyal, M. Al Aziz, N. F. Chamberlain, I. Irfanullah, M. T. Reich, and D. Anagnostou, "A self-adapting flexible (SELFLEX) antenna array for changing conformal surface applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 655-665, 2013.
doi:10.1109/TAP.2012.2226227

16. Sazegar, M., Y. Zheng, H. Maune, C. Damm, X. Zhou, J. Binder, and R. Jakoby, "Low-cost phased-array antenna using compact tunable phase shifters based on ferroelectric ceramics," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 5, 1265-1273, 2011.
doi:10.1109/TMTT.2010.2103092

17. Moussessian, A., L. Del Castillo, J. Huang, G. Sadowy, J. Hoffman, P. Smith, T. Hatake, C. Derksen, B. Lopez, and E. Caro, "Active membrane phased array radar,", Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena, CA, 2005.

18. Chung, D. J., S. Bhattacharya, G. Ponchak, and J. Papapolymerou, "Recent advances in the development of a lightweight, flexible 16 × 16 antenna array with RF MEMS shifters at 14 GHz," 8th Annu. NASA Earth Sci. Technol. Conf., 2008.

19. Vaillancourt, J., H. Zhang, P. Vasinajindakaw, H. Xia, X. Lu, X. Han, D. C. Janzen, W.-S. Shih, C. S. Jones, M. Stroder, et al. "All ink-jet-printed carbon nanotube thin-film transistor on a polyimide substrate with an ultrahigh operating frequency of over 5 GHz," Applied Physics Letters, Vol. 93, No. 24, 243301, 2008.
doi:10.1063/1.3043682

20. Chen, M. Y., X. Lu, H. Subbaraman, and R. T. Chen, "Fully printed phased-array antenna for space communications," SPIE Defense, Security, and Sensing, International Society for Optics and Photonics, 731-814, 2009.

21. Chen, M. Y., D. Pham, H. Subbaraman, X. Lu, and R. T. Chen, "Conformal ink-jet printed-band phased-array antenna incorporating carbon nanotube field-effect transistor based reconfigurable true-time delay lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 1, 179-184, 2012.
doi:10.1109/TMTT.2011.2173209

22. Subbaraman, H., D. T. Pham, X. Xu, M. Y. Chen, A. Hosseini, X. Lu, and R. T. Chen, "Inkjetprinted two-dimensional phased-array antenna on a flexible substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 170-173, 2013.
doi:10.1109/LAWP.2013.2245292

23. Pham, D. T., H. Subbaraman, M. Y. Chen, X. Xu, and R. T. Chen, "Light weight and conformal 2-bit, 1×4 phased-array antenna with CNT-TFT-based phase shifter on a flexible substrate," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4553-4558, 2011.
doi:10.1109/TAP.2011.2165490

24. Gevorgian, S., Ferroelectrics in Microwave Devices, Circuits and Systems: Physics, Modeling, Fabrication and Measurements, Springer Science & Business Media, 2009.
doi:10.1007/978-1-84882-507-9

25. Liou, J. W. and B. S. Chiou, "Dielectric tunability of barium strontium titanate/silicone-rubber composite," Journal of Physics: Condensed Matter, Vol. 10, No. 12, 2773, 1998.
doi:10.1088/0953-8984/10/12/015

26. Hadik, N., A. Outzourhit, A. Elmansouri, A. Abouelaoualim, A. Oueriagli, and E. Ameziane, "Dielectric behavior of ceramic (BST)/epoxy thick films," Active and Passive Electronic Components, 2009.

27. Wang, H., F. Xiang, and K. Li, "Ceramic-polymer Ba0.3Sr0.7TiO3/Poly(Methyl Methacrylate) composites with different type composite structures for electronic technology," International Journal of Applied Ceramic Technology, Vol. 7, No. 4, 435-443, 2010.

28. Hu, T., J. Juuti, and H. Jantunen, "RF properties of BST-PPS composites," Journal of the European Ceramic Society, Vol. 27, No. 8, 2923-2926, 2007.
doi:10.1016/j.jeurceramsoc.2006.11.027

29. Hu, T., J. Juuti, H. Jantunen, and T. Vilkman, "Dielectric properties of BST/polymer composite," Journal of the European Ceramic Society, Vol. 27, No. 13, 3997-4001, 2007.
doi:10.1016/j.jeurceramsoc.2007.02.082

30. Haghzadeh, M., L. M. Bhowmik, C. Armiento, and A. Akyurtlu, "Printed tunable miniaturized frequency selective surface with BST/polymer composite filled interdigital capacitors," IEEE USNCURSI Radio Science Meeting (Joint with AP-S Symposium), 154-154, 2014.

31. Haghzadeh, M. and A. Akyurtlu, "RF measurement technique for characterizing printed ferroelectric dielectrics," 37th Annual Meeting & Symposium, Antenna Measurement Techniques Association (AMTA), 2015.

32. Haghzadeh, M., C. Armiento, and A. Akyurtlu, "Electrostatic and full wave simulations of interdigitated BST varactors with buried plates," IEEE 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, 2015.

33. Lai, A., T. Itoh, and C. Caloz, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, Vol. 5, No. 3, 34-50, 2004.
doi:10.1109/MMW.2004.1337766

34. Erker, E. G., A. S. Nagra, Y. Liu, P. Periaswamy, T. R. Taylor, J. Speck, R. York, et al. "Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 1, 10-12, 2000.
doi:10.1109/75.842071

35. Vélu, G., K. Blary, L. Burgnies, J. C. Carru, E. Delos, A. Marteau, and D. Lippens, "A 310°/3.6-dB K-band phaseshifter using paraelectric BST thin films," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 2, 87-89, 2006.
doi:10.1109/LMWC.2005.863198

36. Sherman, V. O., T. Yamada, A. Noeth, N. Setter, M. Mandeljc, B. Malic, M. Kosec, and M. Vukadinovic, "Microwave phase shifters based on sol-gel derived Ba0.3Sr0.7TiO3 ferroelectric thin films," IEEE EuMIC European Microwave Integrated Circuit Conference, 497-500, 2007.

37. Satish, G. N., K. Srivastava, A. Biswas, and D. Kettle, "A via-free left-handed transmission line with radial stubs," IEEE APMC Asia Pacific Microwave Conference, 2501-2504, 2009.

38. Bhowmik, L. M., C. Armiento, A. Akyurtlu, W. Miniscalco, J. Chirravuri, and C. McCarroll, "Design and analysis of conformal Ku-band microstrip patch antenna arrays," 2013 IEEE International Symposium on Phased Array Systems & Technology, 815-820, 2013.
doi:10.1109/ARRAY.2013.6731932

39. Haupt, R. L., Antenna Arrays: A Computational Approach, John Wiley & Sons Inc., New York, 2010.
doi:10.1002/9780470937464