Vol. 59
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-11-05
Broadband Substrate to Substrate Interconnection
By
Progress In Electromagnetics Research C, Vol. 59, 143-147, 2015
Abstract
A broadband substrate to substrate microwave circuit interconnection is proposed using bond wires and defected ground structure (DGS). The proposed square-shaped DGS etched under compensated microstrip open stubs not only expands its operating bandwidth, but also increases the characteristic impedance of microstrip line without narrowing its width, which breaks the PCB fabrication limitation of narrow stubs. The proposed structure can make the impedance of the microstrip line much larger than that without DGS. A 250 Ω characteristic impedance is easily achieved using 0.6 mm microstrip line with the proposed DGS. Measured S21 and S11 of the proposed interconnection are better than -0.8 and -15 dB from DC to 38 GHz, respectively. And a bandwidth increment of more than 1200% is achieved compared with the conventional one.
Citation
Bo Zhou Chong-Hu Cheng Xingzhi Wang Zixuan Wang Shanwen Hu , "Broadband Substrate to Substrate Interconnection," Progress In Electromagnetics Research C, Vol. 59, 143-147, 2015.
doi:10.2528/PIERC15100102
http://www.jpier.org/PIERC/pier.php?paper=15100102
References

1. Lee, H. Y., "Wideband characterization of mutual coupling between high density bonding wires," IEEE Trans. Microwave Theory Tech., Vol. 4, 265-267, 1994.

2. Lim, J. H., D. H. Kwon, J. S. Rieh, S. W. Kim, and S. W. Hwang, "RF characterization and modeling of various wire bond transitions," IEEE Trans. Microwave Theory Tech., Vol. 28, 265-267, 2008.

3. Wang, Z. and J. Yang, "Layout and process characteristics of LTCC substrate for microwave module," IEEE International Symposium on Radio-frequency Integration Technology, 361-366, 2009.
doi:10.1109/RFIT.2009.5383660

4. Geist, T., "Broadband microwave circuit interconnection," IEEE proceeding of German Microwave Conference, 231-234, 2010.

5. Lee, H.-Y., "Wideband characterization of a typical bonding wire for microwave and millimeter-wave integrated circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 1, 63-68, 1995.
doi:10.1109/22.363006

6. Chen, H.-Y. and C.-H. Tai, "Return loss of three types of arching bond wire structures for RF and microwave circuit applications," Microwave and Optical Technology Letters, Vol. 48, No. 9, 1701-1704, 2006.
doi:10.1002/mop.21807

7. Zhou, B., W. Sheng, and H. Wang, "Bandwidth expansion and slow-wave effect achievement of bond wire interconnection on LTCC substrate," Proc. IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-4, Hangzhou, China, Dec. 2011.

8. Lim, Y. K. and H. Y. Lee, "Novel slow-wave structure using bond-wire for miniaturizing microwave devices," IEEE Proceeding of Asia-Pacific Microwave Conference, 1-4, 2007.

9. Zhou, B., W. Sheng, and H. Wang, "Harmonics suppression of Wilkinson power divider using bond wires with adjustable rejection bands," Microwave and Optical Technology Letters, Vol. 54, No. 3, 775-777, 2012.
doi:10.1002/mop.26662

10. Zhou, B., W. X. Sheng, and H. Wang, "Slow-wave effect enhanced branch line power divider using crossing bond wires," Electron. Lett., Vol. 47, 1246-1247, 2011.
doi:10.1049/el.2011.2545

11. Alimenti, F., P. Mezzanotte, L. Roselli, and R. Sorrentino, "Modeling and characterization of the bonding wire interconnection," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 142-150, 2001.
doi:10.1109/22.899975

12. AXIEM, , AWR Corporation, El Segundo, CA.