Vol. 60
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-12-22
A Dual-Polarized Fabry-Perot Cavity Antenna at Ka Band with Broadband and High Gain
By
Progress In Electromagnetics Research C, Vol. 60, 179-186, 2015
Abstract
A broadband Fabry-Perot cavity antenna (FPCA) operates at Ka band with high gain and dual-polarization is reported. The proposed antenna employed a double-sided complementary-circular partially reflective surface (PRS) to enhance the directivity bandwidth. A square patch coupled by two orthogonal slots and fed by two microstrip lines was applied as the primary feed to achieve dual-polarization operation. To further improve the impedance bandwidth and directivity, a series of metal vias were suggested to surround the primary patch. This FPCA design was verified by the measurements. The experimental results show that the common impedance bandwidth of the two ports for the reflection coefficient (S11) below -10 dB is 2.5 GHz from 34 GHz to 36.5 GHz (7.1%), which covers the common 3 dB gain bandwidth of the two ports. At the center frequency of 35 GHz, the measured peak gains at the two orthogonal ports are 16.1 dBi and 15.1 dBi, respectively. The isolation between the two ports is higher than 30 dB within the bandwidth.
Citation
Guan-Nan Tan Xuexia Yang Hai-Gao Xue Zhongliang Lu , "A Dual-Polarized Fabry-Perot Cavity Antenna at Ka Band with Broadband and High Gain," Progress In Electromagnetics Research C, Vol. 60, 179-186, 2015.
doi:10.2528/PIERC15110501
http://www.jpier.org/PIERC/pier.php?paper=15110501
References

1. Valliappan, N., A. Lozano, and R. W. Heath, "Antenna subset modulation for secure millimeter-wave wireless communication," IEEE Trans. Commun., Vol. 61, No. 8, 3231-3245, Aug. 2013.
doi:10.1109/TCOMM.2013.061013.120459

2. Shinohara, N., "Recent wireless power transmission via microwave and millimeter-wave in Japan," 2012 42nd European Microwave Conference (EuMC), 1347-1350, Amsterdam, Netherlands, Oct. 2012.

3. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, Oct. 1956.
doi:10.1109/TAP.1956.1144455

4. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimised partially reflective surfaces," IEE Proc. - Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

5. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702

6. Sauleau, R., P. Coquet, and T. Matsui, "Low-profile directive quasi-planar antennas based on millimetre wave Fabry-Perot cavities," IEE Proc. - Microw. Antennas Propag., Vol. 150, No. 4, 274-278, Aug. 2003.
doi:10.1049/ip-map:20030416

7. Lee, Y., X. Lu, Y. Hao, S. Yang, J. Evans, and C. G. Parini, "Low-profile directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2893-2903, Oct. 2009.

8. Kai, L., D. Yong, and W. L. Kwok, "A new Fabry-Perot resonator antenna fed by an L-probe," IEEE Trans. Antennas Propag., Vol. 60, No. 3, 1237-1244, Mar. 2012.
doi:10.1109/TAP.2011.2180353

9. Hosseini, S. A., F. Capolino, and F. De Flaviis, "Q-band single-layer planar Fabry-Perot cavity antenna with single integrated-feed," Progress In Electromagnetics Research C, Vol. 52, 135-144, 2014.
doi:10.2528/PIERC14061808

10. Weily, A. R., K. P. Esselle, T. S. Bird, and B. C. Sanders, "Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth," IET Microw. Antennas Propag., Vol. 1, No. 1, 198-203, Feb. 2007.
doi:10.1049/iet-map:20050314

11. Alkhatib, R. and M. Drissi, "Improvement of bandwidth and efficiency for directive superstrate EBG antenna," Electron. Lett., Vol. 43, No. 13, 702-703, Jun. 2007.
doi:10.1049/el:20070808

12. Leger, L., T. Monediere, and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microwave Wireless Compon. Lett., Vol. 15, No. 9, 573-575, Sep. 2005.
doi:10.1109/LMWC.2005.855373

13. Konstantinidis, K., A. P. Feresidis, and P. S. Hall, "Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3474-3481, Jul. 2014.
doi:10.1109/TAP.2014.2320755

14. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2463-2471, May 2014.
doi:10.1109/TAP.2014.2308533

15. Wang, M., Q. Ye, W. Wu, and D.-G. Fang, "A dual-polarized Fabry-Perot resonator antenna," IEEE Asia-Pacific Conference Antennas Propag. (APCAP), 31-32, Singapore, Aug. 2012.

16. Sabri, L., N. Amiri, and K. Forooraghi, "Dual-band and dual-polarized SIW-fed microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1605-1608, 2014.
doi:10.1109/LAWP.2014.2339363

17. Vaid, S. and A. Mittal, "A three layer circularly polarized resonant cavity antenna," IEEE International Microwave and RF Conference (IMaRC), 45-48, Bangalore, Dec. 2014.