Vol. 62
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-02-10
Novel Multi-Target Tracking Algorithm for Automotive Radar
By
Progress In Electromagnetics Research C, Vol. 62, 35-42, 2016
Abstract
Tracking multiple maneuvering targets for automotive radar is a vital issue. To this end, a novel DS-UKGMPHD algorithm which combines diagraph switching (DS), unscented Kalman (UK) filter and Gaussian mixture probability hypothesis density (GMPHD) filter is proposed in this paper. The algorithm is capable of tracking a varying number of target cars detected by automotive radar with nonlinear measurement models in a cluttered environment. In addition, variable structure is used to accommodate various target motions in real world. Simulation results demonstrate the superiority of the presented algorithm to IMM-UKGMPHD filter in terms of estimation accuracy of both number and states.
Citation
Xun Gong Zelong Xiao Jian-Zhong Xu , "Novel Multi-Target Tracking Algorithm for Automotive Radar," Progress In Electromagnetics Research C, Vol. 62, 35-42, 2016.
doi:10.2528/PIERC15121802
http://www.jpier.org/PIERC/pier.php?paper=15121802
References

1. Wang, H. and J. Liu, "The analysis of target track of passive radar based on Kalman filter," Tactical Missile Technology, 2005.

2. Kim, B., K. Yi, H. J. Yoo, H. J. Chong, and B. Ko, "An IMM/EKF approach for enhanced multi-target state estimation for application to integrated risk management system," IEEE Transactions on Vehicular Technology, Vol. 64, No. 3, 1, 2014.
doi:10.1109/TVT.2014.2385477

3. Mahler, R. P. S., "Multitarget bayes filtering via first-order multitarget moments," IEEE Transactions on Aerospace & Electronic Systems, Vol. 39, No. 4, 1152-1178, 2003.
doi:10.1109/TAES.2003.1261119

4. Lundquist, C., L. Hammarstrand, and F. Gustafsson, "Road intensity based mapping using radar measurements with a probability hypothesis density filter," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 1397-1408, 2011.
doi:10.1109/TSP.2010.2103065

5. Heuer, M., A. Al-Hamadi, A. Rain, and M. M. Meinecke, "Detection and tracking approach using an automotive radar to increase active pedestrian safety," 2014 IEEE Intelligent Vehicles Symposium Proceedings, 890-893, IEEE, 2014.
doi:10.1109/IVS.2014.6856589

6. Hong, S., L. Wang, Z.-G. Shi, and K. S. Chen, "Simplified particle phd filter for multiple-target tracking: Algorithm and architecture," Progress In Electromagnetics Research, Vol. 120, 481-498, 2011.
doi:10.2528/PIER11081901

7. Chen, J.-F., Z.-G. Shi, S.-H. Hong, and K. S. Chen, "Grey prediction based particle filter for maneuvering target tracking," Progress In Electromagnetics Research, Vol. 93, 237-254, 2009.
doi:10.2528/PIER09042204

8. Georgescu, R. and P. Willett, "The multiple model CPHD tracker," IEEE Transactions on Signal Processing, Vol. 60, No. 4, 1741-1751, 2012.
doi:10.1109/TSP.2012.2183128

9. Maher, R., "A survey of PHD filter and CPHD filter implementations," Proceedings of SPIE - The International Society for Optical Engineering, Vol. 6567, 65670O-65670O-12, 2007.

10. Hao, Y. L., F. B. Meng, F. Sun, and F. Shen, "Application of UK-GMPHDF algorithm based on imm in multiple maneuvering targets tracking," Systems Engineering - Theory & Practice, Vol. 31, No. 11, 2225-2233, 2011.

11. Li, X. R. and Y. Bar-Shalom, "Multiple-model estimation with variable structure," IEEE Transactions on Automatic Control Ac, Vol. 41, No. 4, 478-493, 1996.
doi:10.1109/9.489270

12. Clark, D., B. N. Vo, and J. Bell, "GM-PHD filter multitarget tracking in sonar images," Defense and Security Symposium, Vol. 6235, 62350R-62350R-8, International Society for Optics and Photonics, 2006.