Vol. 64

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-09

High Gain FSS Aperture Coupled Microstrip Patch Antenna

By Niaz Muhammad, Hassan Umair, Zain Ul Islam, Zar Khitab, Imran Rashid, and Farooq Ahmad Bhatti
Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016
doi:10.2528/PIERC16022102

Abstract

This paper presents a high-gain cavity resonant antenna (CRA), consisting of an FSS layer placed above an aperture coupled microstrip patch antenna (ACMPA). Geometry of the proposed FSS superstrate is highly reflective with |Γ>0.9|. Ray-tracing method has been employed for determining the resonant condition of the antenna. ACMPA operating at S-band is serving as a feeding source. The coupling aperture of the antenna is of novel design, and several figures of merit have been presented for the proposed coupling aperture. Analysis of CRA has been carried out with the design parameters of the CRA. HFSS-13 has been utilized as simulation tool. Measured results are in good agreement with the simulated ones.

Citation


Niaz Muhammad, Hassan Umair, Zain Ul Islam, Zar Khitab, Imran Rashid, and Farooq Ahmad Bhatti, "High Gain FSS Aperture Coupled Microstrip Patch Antenna," Progress In Electromagnetics Research C, Vol. 64, 21-31, 2016.
doi:10.2528/PIERC16022102
http://www.jpier.org/PIERC/pier.php?paper=16022102

References


    1. Von Trentini, G., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 10, 666-671, 1956.
    doi:10.1109/TAP.1956.1144455

    2. Boutayeb, H., K. Mahdjoubi, A. C. Tarot, and T. A. Denidni, "Directivity of an antenna embedded inside a Fabry-Perot cavity: Analysis and design," Microwave and Optical Technology Letters, Vol. 48, No. 1, 12-17, 2006.
    doi:10.1002/mop.21249

    3. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High-gain 1D EBG resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
    doi:10.1002/mop.21095

    4. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic band gap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
    doi:10.1109/TAP.2004.840521

    5. Cheype, C., C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, "An electromagnetic band gap resonator antenna,", Vol. 50, No. 9, 1285-1290, 2002.
    doi:10.1109/TAP.2002.800699

    6. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings Microwave and Antennas Propagation, Vol. 148, No. 6, 345-350, 2001.
    doi:10.1049/ip-map:20010828

    7. Guerin, N., S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, "A metallic Fabry-Perot directive antenna," A Metallic Fabry-Perot Directive Antenna, Vol. 54, No. 1, 220-224, 2006.

    8. Ge, Y. and K. P. Esselle, "A resonant cavity antenna based on an optimized thin superstrate," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3057-3059, 2008.
    doi:10.1002/mop.23898

    9. Feresidis, A. P. and J. C. Vardaxoglou, "A broadband high-gain resonant cavity antenna with single feed," Proceedings 1st EuCAP, 1-5, 2006.

    10. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 248-254, 2007.

    11. Moustafa, L. and B. Jecko, "EBG structure with wide defect band for broadband cavity antenna applications," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 693-696, 2008.
    doi:10.1109/LAWP.2008.2009076

    12. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 743-750, 2012.
    doi:10.1109/TAP.2011.2173113

    13. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
    doi:10.1109/TAP.2004.840528

    14. Foroozesh, A. and L. Shafai, "Investigation Into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2010.
    doi:10.1109/TAP.2009.2037702

    15. Pozar, D. M., "Microstrip antenna aperture-coupled to a microstripline," Electronics Letters, Vol. 21, No. 2, 49-50, 1985.
    doi:10.1049/el:19850034

    16. Bilgic, M. M. and K. Yegin, "Gain-bandwidth product for aperture-coupled antennas," IEEE Computational Electromagnetic Workshop, 21-22, 2013.

    17. Bilgic, M. M. and K. Yegin, "High gain wideband aperture coupled microstrip antenna design based on gain-bandwidth product analysis," ACES Journal, Vol. 29, No. 8, 560-567, 2014.

    18. Pirhadi, A., M. Hakkak, F. Keshmiri, and R. K. Baee, "Design of compact dual band high directive electromagnetic band gap (EBG) resonator antenna using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1682-1690, 2007.
    doi:10.1109/TAP.2007.898598

    19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
    doi:10.1002/0471723770

    20. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2104, 2012.
    doi:10.1109/TAP.2012.2186230

    21. Foroozesh, A. and L. Shafai, "2-D truncated periodic leaky-wave antennas with reactive impedance surface ground," IEEE Antennas and Propagation Society International Symposium, 15-18, 2006.
    doi:10.1109/APS.2006.1710440