Vol. 64

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-05-22

A UHF Third Order 5-Bit Digital Tunable Bandpass Filter Based on Mixed Coupled Open Ring Resonators

By Mingye Fu, Qian-Yin Xiang, Dan Zhang, Dengyao Tian, and Quanyuan Feng
Progress In Electromagnetics Research C, Vol. 64, 89-96, 2016
doi:10.2528/PIERC16032701

Abstract

This paper presents a third-order digital tunable bandpass filter based on digitally tunable capacitor loaded microstrip open ring resonator. Magnetic dominated mixed coupling is utilized to make the coupling coefficient meet the requirement of stable bandwidth response. Electric source-load coupling is designed to generate a transmission zero for improving the frequency selectivity. This filter is designed, fabricated and measured. The measurement shows that the filter can be digitally tuned by 5-bits pure digital command. The fractional bandwidth is 9±1%, and the tuning range is from 410 MHz to 820 MHz.

Citation


Mingye Fu, Qian-Yin Xiang, Dan Zhang, Dengyao Tian, and Quanyuan Feng, "A UHF Third Order 5-Bit Digital Tunable Bandpass Filter Based on Mixed Coupled Open Ring Resonators," Progress In Electromagnetics Research C, Vol. 64, 89-96, 2016.
doi:10.2528/PIERC16032701
http://www.jpier.org/PIERC/pier.php?paper=16032701

References


    1. Asadi, H., H. Volos, M. M. Marefat, and T. Bose, "Metacognition and the next generation of cognitive radio engines," IEEE Communications Magazine, Vol. 54, No. 1, 76-82, 2016.
    doi:10.1109/MCOM.2016.7378429

    2. Abbaspour-Sani, E., N. Nasirzadeh, and G. R. Dadashzadeh, "Two novel structures for tunable MEMS capacitor with RF applications," Progress In Electromagnetics Research, Vol. 68, 169-183, 2007.
    doi:10.2528/PIER06081404

    3. Gao, L., X. Y. Zhang, and Q. Xue, "Compact tunable filtering power divider with constant absolute bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 10, Oct. 2015.

    4. Xiang, Q., Q. Feng, X. Huang, and D. Jia, "Electrical tunable microstrip LC bandpass filters with constant bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 3, 1124-1130, 2013.
    doi:10.1109/TMTT.2013.2241781

    5. Uher, J. and W. J. R. Hoefer, "Tunable microwave and millimeter-wave bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 39, 643-653, Apr. 1991.
    doi:10.1109/22.76427

    6. Xiang, Q., Q. Feng, and X. Huang, "Half-mode substrate integrated waveguide (HMSIW) filters and its application to tunable filters," Journal of Electromagnetic Waves and Applications, Vol. 25, 2043-2053, 2011.
    doi:10.1163/156939311798072027

    7. Huang, X., L. Zhu, Q. Feng, Q. Xiang, and D. Jia, "Tunable bandpass filter with independently controllable dual passbands," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 9, 3200-3208, Sep. 2013.
    doi:10.1109/TMTT.2013.2273894

    8. Xiang, Q., Q. Feng, and X. Huang, "Substrate integrated waveguide filters and mechanical/ electrical reconfigurable half-mode substrate integrated waveguide filters," Journal of Electromagnetic Waves and Applications, Vol. 26, 1756-1766, 2012.
    doi:10.1080/09205071.2012.711526

    9. El-Tanani, M. A. and G. M. Rebeiz, "A two-pole two-zero tunable filter with improved linearity," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 4, Apr. 2009.
    doi:10.1109/TMTT.2009.2015124

    10. Zhang, X. Y., C. H. Chan, Q. Xue, and B.-J. Hu, "RF tunable bandstop filters with constant bandwidth based on a doublet configuration," IEEE Trans. Ind. Electron., Vol. 59, No. 2, 1257-1265, Feb. 2012.
    doi:10.1109/TIE.2011.2158038

    11. Luo, X., S. Sun, and R. B. Staszewski, "Tunable bandpass filter with two adjustable transmission poles and compensable coupling," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 9, 2003-2013, Sep. 2014.
    doi:10.1109/TMTT.2014.2337287

    12. Wang, Y., F. Wei, H. Xu, and X.-W. Shi, "A tunable 1.4–2.5GHz bandpass filter based on single mode," Progress In Electromagnetics Research, Vol. 135, 261-269, 2013.
    doi:10.2528/PIER12111704

    13. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
    doi:10.2528/PIER10100808

    14. Xiang, Q.-Y., Q. Feng, X.-G. Huang, and D.-H. Jia, "A novel microstrip Lc reconfigurable bandpass filter," Progress In Electromagnetics Research Letters, Vol. 36, 171-179, 2013.
    doi:10.2528/PIERL12111202

    15. Cao, L., G. Li, J. Hu, and L. Yin, "A miniaturized tunable bandpass filter with constant fractional bandwidth," Progress In Electromagnetics Research C, Vol. 57, 89-97, 2015.
    doi:10.2528/PIERC15032701

    16. Jia, D.-H., Q. Feng, X.-G. Huang, and Q.-Y. Xiang, "A dual-band bandpass filter with a tunable passband," Progress In Electromagnetics Research C, Vol. 37, 107-118, 2013.
    doi:10.2528/PIERC12121210

    17. Tu, W.-H., "Compact low-loss reconfigurable bandpass filter with switchable bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 4, 208-210, Apr. 2010.
    doi:10.1109/LMWC.2010.2042553

    18. Ur Rehman, M. Z., Z. Baharudin, M. A. Zakariya, M. H. M. Khir, M. T. Jilani, and M. T. Khan, "RF MEMS based half mode bowtie shaped substrate integrated waveguide tunable bandpass filter," Progress In Electromagnetics Research C, Vol. 60, 21-30, 2015.
    doi:10.2528/PIERC15091407

    19. Young, R. M., et al., "Low-loss bandpass RF filter using MEMS capacitance switches to achieve a one-octave tuning range and independently variable bandwidth," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, 1781-1784, 2003.

    20. Park, S. J., K. Y. Le, and G. M. Rebeiz, "Low-loss 5.15–5.70-GHz RF MEMS switchable filter for wireless LAN applications," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3931-3939, Nov. 2006.
    doi:10.1109/TMTT.2006.884625

    21. El-Tanani, M. A. and G. M. Rebeiz, "High-performance 1.5–2.5-GHz RF-MEMS tunable filters for wireless applications," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, Jun. 2010.
    doi:10.1109/TMTT.2010.2049166

    22., , PE64904: 5-bit 32-state Digitally Tunable Capacitor, 100–3000 MHz, Peregrine Semiconductor, 9380 Carroll Park Drive, San Diego, CA 921921, USA.

    23. Jaschke, A., M. Tessema, M. Schuhler, and R. Wansch, "Digitally tunable bandpass filter for cognitive radio applications," IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks, 338-342, 2012.

    24. Ranta, T. and R. Novak, "New tunable technology for mobile-TV antennas," Microwave Journal, Nov. 2008.

    25. Gao, L., X. Y. Zhang, B.-J. Hu, and Q. Xue, "Novel multi-stub loaded resonators and their applications to various bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 5, May 2014.
    doi:10.1109/TMTT.2014.2314680

    26. Zhao, Z., J. Chen, L. Yang, and K. Chen, "Three-pole tunable filters with constant bandwidth using mixed combline and split-ring resonators," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, Oct. 2014.

    27. Chiou, Y.-C. and G. M. Rebeiz, "Tunable 1.55–2.1GHz 4-pole elliptic bandpass filter with bandwidth control and > 50 dB rejection for wireless systems," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 117-124, Jan. 2013.
    doi:10.1109/TMTT.2012.2227789

    28. Dai, G. L., X. Y. Zhang, C. H. Chan, Q. Xue, and M. Y. Xia, "An investigation of open- and short-ended resonators and their applications to bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2203-2210, Sep. 2009.
    doi:10.1109/TMTT.2009.2027173

    29. Zhang, X. Y., Q. Xue, C. H. Chan, and B.-J. Hu, "Low-loss frequency-agile bandpass filters with controllable bandwidth and suppressed second harmonic," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 6, 1557-1564, Jun. 2010.
    doi:10.1109/TMTT.2010.2048250

    30. Huang, X., Q. Feng, L. Zhu, and Q. Xiang, "A constant absolute bandwidth tunable filter using varactor-loaded open-loop resonators," Asia-Pacific Microwave Conference Proceedings 2013, 872-874, 2013.
    doi:10.1109/APMC.2013.6694986

    31. Chiou, Y. C. and G. M. Rebeiz, "A quasi elliptic function 1.75–2.25 GHz 3-pole bandpass filter with bandwidth control," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 2, 244-249, Feb. 2012.
    doi:10.1109/TMTT.2011.2178260