Vol. 64

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-06-07

A Compact GPS/WLAN Antenna Design for Mobile Terminal with Full Metal Housing

By Zheqiang Wu, Hao Wang, Peng Chen, Wenhui Shen, and Guangli Yang
Progress In Electromagnetics Research C, Vol. 64, 169-177, 2016
doi:10.2528/PIERC16040804

Abstract

Miniaturization and metal-housing environment are the two most critical problems in the design of antennas, because they can highly deteriorate the performances of antenna, which not only affects the antenna efficiency, but also influences the bandwidth. In this paper, a compact size antenna with full metal housing for GPS/WLAN applications is studied. The proposed antenna can excite triple-band operation that covers the GPS (1.575 GHz), WLAN 2.45 GHz and WLAN 5.2/5.8 GHz bands, and its corresponding measured average efficiencies over these three desired bands were 40%, 41%, and 70%, respectively. The proposed antenna has a volume of 20.5×5×4 mm3, which is probably the smallest antenna in the industry for full metal housing applications.

Citation


Zheqiang Wu, Hao Wang, Peng Chen, Wenhui Shen, and Guangli Yang, "A Compact GPS/WLAN Antenna Design for Mobile Terminal with Full Metal Housing," Progress In Electromagnetics Research C, Vol. 64, 169-177, 2016.
doi:10.2528/PIERC16040804
http://www.jpier.org/PIERC/pier.php?paper=16040804

References


    1. Nashaat, D. M., H. Elsadek, and H. Ghali, "Single feed compact quad-band PIFA antenna for wireless communication applications," IEEE Trans. Antennas Propag., Vol. 53, 2631-2635, 2005.
    doi:10.1109/TAP.2005.851872

    2. Nepa, P., et al., "Multiband PIFA for WLAN mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 4, 349-350, 2005.
    doi:10.1109/LAWP.2005.857032

    3. Tseng, C. and Y. Chen, "Small pifa for ZigBee and wlan application," Microwave Opt. Technol. Lett., Vol. 55, 1074-1077, 2013.
    doi:10.1002/mop.27511

    4. Lee, J. M., et al., "A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices," IEEE Antennas Wireless Propag. Lett., Vol. 11, 990-993, 2012.
    doi:10.1109/LAWP.2012.2214431

    5. Alam, T., M. R. I. Faruque, and M. T. Islam, "Specific absorption rate reduction of multi-standard mobile antenna with double-negative metamaterial," Electron Lett., Vol. 51, 970-971, 2015.
    doi:10.1049/el.2015.1141

    6. Lotfi, P., M. Azarmanesh, and S. Soltani, "Rotatable dual band-notched UWB/triple-band WLAN reconfigurable antenna," IEEE Antennas Wireless Propa. Lett., Vol. 12, 104-107, 2013.
    doi:10.1109/LAWP.2013.2242842

    7. Alhaddad, A. G., et al., "Folded loop balanced coplanar antenna for WLAN applications," IEEE Trans. Antennas Propag., Vol. 60, 4916-4920, 2012.
    doi:10.1109/TAP.2012.2207322

    8. Lim, J. H., et al., "A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/ m-WiMAX/WLAN," IEEE Trans. Antenna Propag., Vol. 58, 2404-2411, 2010.
    doi:10.1109/TAP.2010.2055801

    9. Li, R. L., et al., "A compact broadband planar antenna for GPS, DCS-1800, IMT-2000 and WLAN applications," IEEE Antenna Wireless Propag. Lett., Vol. 6, 25-27, 2007.
    doi:10.1109/LAWP.2006.890754

    10. Wu, J. G. and X. M. Zhou, "A design of miniaturization dual-frequency antenna for GPS and WLAN application," IEEE International Conference on Microwave and Millimeter Wave Technology, 1-3, 2012.

    11. Ma, S. L. and J. S. Row, "Design of single-feed dual-frequency patch antenna for GPS and WLAN applications," IEEE Trans. Antennas Propag., Vol. 59, 3433-3436, 2011.
    doi:10.1109/TAP.2011.2161453

    12. Lai, Z. and J. Yuan, "Design of single-layer single-feed patch antenna for GPS and WLAN applications," IEEE Proceedings of the International Symposium on Antennas and Propagation (ISAP), 737-739, 2013.

    13. Lin, C. H., et al., "A novel on-glass antenna for mobile handset applications," IEEE International Symposium on Computer, Consumer and Control (IS3C), 236-239, 2012.

    14. Saeed, A. A., S. Shams, and A. Allam, "Compact multiband omni-directional printed antennas," IEEE International Symposium on Antenna Technology and Applied Electromagnetics and the American Electromagnetics Conference, 1-4, 2010.
    doi:10.1109/ANTEM.2010.5552550

    15. Kim, J. I., Y. J. Chong, and J. I. Choi, "Printed multiband terminal antenna for multiple wireless services," Antennas and Propagation, Vol. 491, 324-327, 2003.

    16. Abutarboush, H. F. and A. Shamim, "Wide frequency independently controlled dual-band inkjetprinted antenna," IET Microwave Antennas Propaga., Vol. 8, 52-56, 2014.
    doi:10.1049/iet-map.2013.0229

    17. Hady, L. K., A. Kishk, and D. Kajfez, "Dual-band compact DRA with circular and monopole-like linear polarizations as a concept for GPS and WLAN applications," IEEE Trans. Antenna Propag., Vol. 57, 2591-2598, 2009.
    doi:10.1109/TAP.2009.2024488

    18. Li, Y., et al., "A compact hepta-band loop-inverted F reconfigurable antenna for mobile phone," IEEE Trans. Antenna Propag., Vol. 60, 389-392, 2012.
    doi:10.1109/TAP.2011.2167949

    19. Wang, H. and M. Zheng, "A multi-band internal antenna," IEEE Antennas and Propagation Conference (LAPC), 1-4, Loughborough, England, 2011.

    20. Kim, S. H., et al., "A compact GPS and WLAN PIFA for full metal-rimmed mobile handset using the ground bridges," IEEE Microwave Conference Proceedings (APMC), 648-650, 2013.

    21. Wu, C. Y., Y. L. Kuo, and K. C. Lin, "Low-profile tunable WWAN antenna for Whole-Metal- Covered mobile phone applications," IEEE International Symposium on Antennas and Propagation (ISAP), 275-276, 2014.

    22. Chen, L. Y. and K. L. Wong, "2.4/5.2/5.8 GHz WLAN antenna for the ultra-book computer with metal housing," IEEE Asia-Pacific Microwave Conference Proceedings (APMC), 322-324, 2012.

    23. Chou, J. H., et al., "A compact loop-slot mode combination antenna for ultra-thin tablet computer with metallic bottom cover," IEEE Antenna Wireless Propag. Lett., Vol. 13, 746-749, 2014.
    doi:10.1109/LAWP.2014.2316554

    24. Valagiannopoulos, C. A., "On examining the influence of a thin dielectric strip posed across the diameter of a penetrable radiating cylinder," Progress In Electromagnetics Research C, Vol. 3, 203-214, 2008.
    doi:10.2528/PIERC08042906

    25. Valagiannopoulos, C. A., "High selectivity and controllability of a parallel-plate component with a filled rectangular ridge," Progress In Electromagnetics Research, Vol. 119, 497-511, 2011.
    doi:10.2528/PIER11062603

    26. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297-325, 2007.
    doi:10.2528/PIER07041203