Vol. 67
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-08
An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR
By
Progress In Electromagnetics Research C, Vol. 67, 49-57, 2016
Abstract
Digital beamforming (DBF) on receive in elevation with a large receiving antenna will be widely adopted in future spaceborne synthetic aperture radar (SAR) missions to improve system performances. Furthermore, DBF can be used to separate echoes corresponding to different sub-pulses in some novel spaceborne SAR imaging modes. This paper proposes an improved DBF processor with a large receiving antenna for separating echoes. The proposed DBF processor includes three important parts: multiples sharp receiving beam generation, range compression and null steering. Compared with the conventional DBF processor in spaceborne SAR, the proposed DBF processor can separate echoes with better performances. Simulation results on point targets demonstrate the validity of the proposed DBF processor.
Citation
Hongbo Mo Wei Xu Zhimin Zeng , "An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR," Progress In Electromagnetics Research C, Vol. 67, 49-57, 2016.
doi:10.2528/PIERC16052606
http://www.jpier.org/PIERC/pier.php?paper=16052606
References

1. Gebert, N., "Multi-channel azimuth processing for high-resolution wide-swath SAR imaging,", Ph.D. dissertation, Univ. Karlsruhe, Karlsruhe, Germany, 2009.
doi:10.1049/ip-f-2.1992.0016

2. Currie, A. and M. A. Brown, "Wide-swath SAR," Proc. Inst. Electr. Eng. F — Radar Signal Process., Vol. 139, No. 2, 122-135, Apr. 1992.
doi:10.1049/ip-rsn:19990126

3. Callaghan, G. D. and I. D. Longstaff, "Wide-swath space-borne SAR using a quad-element array," Proc. Inst. Electr. Eng. — Radar, Sonar Navig., Vol. 146, No. 3, 159-165, Jun. 1999.

4. Suess, M., B. Grafmueller, and R. Zahn, "A novel high resolution, wide swath SAR system," Proc. IEEE Int. Geosci. Remote Sens. Symp., 1013-1015, Sydney, Australia, 2001.

5. Suess, M. and W. Wiesbeck, "Side-looking synthetic aperture radar system,", Euro Patent EP 1 241 487 A1, 2001.

6. Krieger, G., N. Gebert, M. Younis, and A. Moreira, "Advanced synthetic aperture radar based on digital beamforming and waveform diversity," Proc. IEEE Radar Conf., 1-6, 2008.
doi:10.1109/TGRS.2007.905974

7. Krieger, G., N. Gebert, and A. Moreira, "Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 1, 31-46, Jan. 2008.
doi:10.1109/TGRS.2011.2116030

8. Wang, W.-Q., "Space-time coding MIMO-OFDM SAR for high-resolution imaging," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 8, 3094-3104, Aug. 2011.

9. Wang, W.-Q., "Virtual antenna array analysis for MIMO synthetic aperture radars," Int. J. Antennas Propag., Vol. 2012, 276, 587, 2012.
doi:10.1109/LGRS.2012.2193870

10. Wang, W.-Q., "Mitigating range ambiguities in high-PRF SAR with OFDM waveform diversity," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 1, 101-105, Jan. 2013.
doi:10.1109/TGRS.2013.2263934

11. Krieger, G., "MIMO-SAR: Opportunities and pitfalls," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 5, 2628-2645, May 2014.
doi:10.1109/LGRS.2012.2213577

12. Kim, J., M. Younis, A. Moreira, and W. Wiesbeck, "A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 3, 568-572, May 2013.
doi:10.1109/MAES.2012.6397660

13. Xu, W., Y. Deng, and R. Wang, "Multichannel synthetic aperture radar systems with a planar antenna for future spaceborne microwave remote sensing," IEEE Aerospace and Electronic Systems Magazine, Vol. 46, No. 12, 26-30, Dec. 2012.
doi:10.1109/TGRS.2012.2187905

14. Feng, F., S. Li, W. Yu, P. Huang, and W. Xu, "Echo separation in multi-dimensional waveform encoding SAR remote sensing using an advanced null-steering beamformer," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 10, 4157-4172, Oct. 2012.