Vol. 67
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-02
An Independently Tunable Dual-Band Bandpass Filter Using a Center Shorting-Stub-Loaded Resonator
By
Progress In Electromagnetics Research C, Vol. 67, 31-40, 2016
Abstract
This paper presents an independently tunable dual-band bandpass filter based on center shorting-stub-loaded resonators. The center shorting-stub-loaded resonator is a dual-mode resonator that generates odd-even modes approximately equal and coupled when the shorting stub is very short. Two different sizes of center shorting-stub-loaded resonators produce two separated resonant frequencies, which are mutually independent. The coupling between the source and load is introduced in the circuit by designing an appropriate coupling structure, and the skirt selectivity of the filter is greatly improved. Four varactor diodes are placed at the two open-circuit ends of the center shorting-stub-loaded resonator to control the two separated resonant frequencies. A prototype of a tunable dual-band filter with Chebyshev response is designed and fabricated. The measured results are in good agreement with the full-wave simulated results. Results show that the first passband varies in a frequency range from 0.81 GHz to 0.95 GHz with a 3 dB fractional bandwidth of 4.2% to 5%, whereas the second passband can be tuned from 1.51 GHz to 1.79 GHz with a 3 dB fractional bandwidth of 6.8% to 8%.
Citation
Fei Liang Weiwei Cai Wenzhong Lu Li Deng Xiaofei Zhai , "An Independently Tunable Dual-Band Bandpass Filter Using a Center Shorting-Stub-Loaded Resonator," Progress In Electromagnetics Research C, Vol. 67, 31-40, 2016.
doi:10.2528/PIERC16053102
http://www.jpier.org/PIERC/pier.php?paper=16053102
References

1. Wong, P. W. and I. C. Hunter, "Electronically reconfigurable microwave bandpass filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 3,070-3,079, 2009.
doi:10.1109/TMTT.2009.2033883

2. Entesari, K. and G. M. Rebeiz, "A differential 4-bit 6.5-10-GHz RF MEMS tunable filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1,103-1,110, 2005.
doi:10.1109/TMTT.2005.843501

3. Entesari, K. and G. M. Rebeiz, "A 12–18-GHz three-pole RF MEMS tunable filter," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, 2,566-2,571, 2005.
doi:10.1109/TMTT.2005.852761

4. Huang, F., S. Fouladi, and R. R. Mansour, "High-tunable dielectric resonator filters using MEMS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3,401-3,409, 2011.
doi:10.1109/TMTT.2011.2171984

5. Park, S. J., M. A. El-Tanani, I. Reines, and G. M. Rebeiz, "Low-loss 4–6-GHz tunable filter with 3-bit high-orthogonal bias RF-MEMS capacitance network," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 10, 2,348-2,355, 2008.
doi:10.1109/TMTT.2008.2003521

6. Nath, J., D. Ghosh, J. P. Maria, A. I. Kingon, W. Fathelbab, P. D. Franzon, and M. B. Steer, "An electronically tunable microstrip bandpass filter using thin-film Barium-Strontium-Titanate (BST) varactors," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2,707-2,712, 2005.
doi:10.1109/TMTT.2005.854196

7. Jiang, H., B. Lacroix, K. Choi, Y. Wang, A. T. Hunt, and J. Papapolymerou, "Ka and U band tunable bandpass filters using ferroelectric capacitors," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3,068-3,075, 2011.
doi:10.1109/TMTT.2011.2170088

8. Liu, B., F. Wei, and X. Shi, "Reconfigurable bandpass filter based on net-type stepped-impedance resonator," Electronics Letters, Vol. 46, No. 22, 1,506-1,507, 2010.
doi:10.1049/el.2010.2583

9. Chen, J.-X., J. Shi, Z.-H. Bao, and Q. Xue, "Tunable and switchable bandpass filters using slot-line resonators," Progress In Electromagnetics Research, Vol. 111, 25-41, 2011.
doi:10.2528/PIER10100808

10. Wang, Y.-Y., F. Wei, H. Xu, and X. W. Shi, "A tunable 1.4-2.5GHz bandpass filter based on single mode," Progress In Electromagnetics Research, Vol. 135, 261-269, 2013.
doi:10.2528/PIER12111704

11. Chaudhary, G., Y. Jeong, and J. Lim, "Dual-band bandpass filter with independently tunable center frequencies and bandwidths," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 107-116, 2013.
doi:10.1109/TMTT.2012.2222910

12. Kim, G. R., "A novel compact tunable bandpass filter loaded varactor diode on the DGS," Journal of Information and Communication Convergence Engineering, Vol. 8, No. 3, 263-266, 2010.
doi:10.6109/jicce.2010.8.3.263

13. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.
doi:10.2528/PIER11052203

14. Serrano, A. L. C., F. S. Correra, T.-P. Vuong, and P. Ferrari, "Synthesis methodology applied to a tunable patch filter with independent frequency and bandwidth control," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 484-493, 2007.
doi:10.1109/TMTT.2011.2181533

15. Liu, B., F. Wei, and Q.-Y. Wu, "A tunable bandpass filter with constant absolute bandwidth," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11–12, 1596-1604, 2011.
doi:10.1163/156939311797164819

16. Huang, X.-G., L. Zhu, Q.-Y. Feng, Q.-Y. Xiang, and D.-H. Jia, "Tunable bandpass filter with independently controllable dual passbands," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 9, 3,200-3,208, 2013.
doi:10.1109/TMTT.2013.2273894

17. Chaudhary, G., Y. Jeong, and Lim, "Harmonic suppressed dual-band bandpass filters with tunable passbands," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 7, 2,115-2,123, 2012.
doi:10.1109/TMTT.2012.2197020

18. Liang, F., X.-F. Zhai, W.-Z. Lu, Q.-X. Wan, and Y.-Y. Zhang, "An independently tunable dual-band filter using asymmetric λ/4 resonator pairs with shared via-hole ground," Progress In Electromagnetics Research, Vol. 146, 99-108, 2014.
doi:10.2528/PIER14032505