Vol. 67
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-08-26
Interaction Between Human and Near-Field of Wireless Power Transfer System
By
Progress In Electromagnetics Research C, Vol. 67, 1-10, 2016
Abstract
In this paper we provide new recommendations for a type of antenna design in applications where a human is present in the vicinity of a wireless power transfer (WPT) system by means of power transfer efficiency (PTE) and specific absorption rate (SAR). The interaction between a homogenous human model and different WPT systems is investigated at 13.56 MHz using spherical mode theory antenna model (SMT-AM) and full-wave numerical analysis. The human model exposure and the performance of the proposed WPT system are analyzed further for some typical scenarios. It is shown that the position in which the human model is closer to the receiver is favorable over the position closer to the transmitter, concerning both PTE and SAR. Also, the consideration of variable receiver load indicates that different levels of SAR coupled by degraded PTE can be expected. The proposed antennas are designed and proof of concept WPT measurements are carried out.
Citation
Maja Skiljo Zoran Blazevic Dragan Poljak , "Interaction Between Human and Near-Field of Wireless Power Transfer System," Progress In Electromagnetics Research C, Vol. 67, 1-10, 2016.
doi:10.2528/PIERC16062005
http://www.jpier.org/PIERC/pier.php?paper=16062005
References

1., , Alliance for wireless power, https://www.rezence.com.
doi:10.1016/j.aop.2007.04.017

2., , WiTricity, http://www.witricity.com.
doi:10.1109/TIE.2010.2046002

3. Karalis, A., J. D. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Ann. Phys., Vol. 323, 34-48, 2008.
doi:10.1109/TAP.2010.2044321

4. Sample, A., D. Meyer, and J. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Trans. Ind. Electron, Vol. 58, No. 2, 544-554, Feb. 2010.

5. Yuan, Q., Y. Chen, L. Li, and K. Sawaya, "Numerical analysis on transmission efficiency of evanescent resonant coupling wireless power transfer system," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1751-1758, May 2010.
doi:10.1109/LAWP.2010.2068534

6. Lee, J. and S. Nam, "Fundamental aspects of near-field coupling small antennas for wireless power transfer," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3442-3449, 2010.
doi:10.1109/TAP.2010.2103034

7. Yoon, I. J. and H. Ling, "Realizing efficient wireless power transfer using small folded cylindrical helix dipoles," IEEE Antennas Wireless Propag. Lett., Vol. 9, 846-849, 2010.

8. Tak, Y., J. Park, and S. Nam, "The optimum operating frequency for near-field coupled small antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 1027-1031, Mar. 2011.
doi:10.1063/1.1715038

9. Skiljo, M. and Z. Blazevic, "Spherical helices for resonant wireless power transfer," International Journal of Antennas and Propagation, Vol. 2013, 1-12, Article ID 426574, 2013.
doi:10.1109/JRPROC.1947.226199

10. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, 1948.
doi:10.1109/TAP.1970.1139795

11. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/TAP.2012.2215296

12. Wasylkiwskyj, W. and W. K. Kahn, "Scattering properties and mutual coupling of antennas with prescribed radiation pattern," IEEE Trans. Antennas Propag., Vol. 18, No. 6, 741-752, 1970.

13. Yoon, I. J. and H. Ling, "Investigation of near-field wireless power transfer in the presence of lossy dielectric materials," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 482-488, 2013.

14., IEEE Std C95.1 IEEE Standard for Safety Levels With Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300GHz, IEEE SCC28, IEEE Standards Department, International Committee on Electromagnetic Safety, The Institute of Electrical and Electronics Engineers, NY, 1999.

15. ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300GHz)," Health Phys., Vol. 74, 494-522, 1998.
doi:10.1109/TEMC.2014.2308013

16. Christ, A., M. G. Douglas, J. M. Roman, E. B. Cooper, A. P. Sample, B. H. Waters, J. R. Smith, and N. Kuster, "Evaluation of wireless resonant power transfer systems with human electromagnetic exposure limits," IEEE Trans. Electromagn. Compat., Vol. 55, No. 2, 265-274, Apr. 2013.
doi:10.1109/TPEL.2015.2400455

17. Chen, X. L., A. E. Umenei, D. W. Baarman, N. Chavannes, V. De Santis, J. R. Mosig, and N. Kuster, "Human exposure to close-range resonant wireless power transfer systems as a function of design parameters," IEEE Trans. Electromagn. Compat., Vol. 56, No. 5, 1027-1034, Oct. 2014.
doi:10.1109/MAP.2005.1589871

18. Nadakuduti, J., M. Douglas, L. Lu, A. Christ, P. Guckian, and N. Kuster, "Compliance testing methodology for wireless power transfer systems," IEEE Trans. Power Electron., Vol. 30, No. 11, 6264-6273, 2015.

19. Best, S. R., "The performance properties of electrically small resonant multiple-arm folded wire antennas," IEEE Antennas Propag. Mag., Vol. 47, No. 4, 13-27, 2005.

20. Skiljo, M. and Z. Blazevic, "Interaction between humans and wireless power transfer systems," Proc. Soft COM, 15-18, 2014.
doi:10.1109/TBME.2006.877798

21. Hasgall, P. A., F. Di Gennaro, C. Baumgartner, E. Neufeld, M. C. Gosselin, D. Payne, A. Klingenb¨ock, and N. Kuster, "IT’IS Database for thermal and electromagnetic parameters of biological tissues,", Version 2.6, www.itis.ethz.ch/database.

22. Hirata, A., O. Fujiwara, and T. Shiozawa, "Correlation between peak spatial-average SAR and temperature increase due to antennas attached to human trunk," IEEE Transactions on Biomedical Engineering, Vol. 53, No. 8, 1658-1664, Aug. 2006.