Vol. 68
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-10-05
High-Gain Planar Lens Antennas Based on Transformation Optics and Substrate-Integrated Waveguide (SIW) Technology
By
Progress In Electromagnetics Research C, Vol. 68, 45-55, 2016
Abstract
Transformation of space coordinates is a tool to synthesize material properties in view of obtaining a controlled electromagnetic field pattern. Also, substrate-integrated waveguide (SIW) technology can well be exploited to develop microwave and millimeter-wave components. In this paper, by combining these features, high-gain SIW planar lens antennas are proposed. Using the embedded transformation-optics lenses, both narrow beamwidth of 12˚ and low sidelobe levels of -23 dB are achieved for the H-plane radiation patterns by a single antenna. The designed transformation-optics lenses can be realized by drilling spatially varying cylindrical holes in an ordinary dielectric substrate. The E-plane radiation patterns can also be improved through the dielectric slabs in front of the antenna aperture integrated in the same substrate. Therefore, using SIW technology, the lens antennas can be fabricated on a single substrate. An H-plane sectoral horn and a Maxwell-fisheye-based lens antenna are designed using the proposed method. Simulation results confirm the validity of the proposed idea and the advantages of these lens antennas.
Citation
Iman Aghanejad Habibollah Abiri Alireza Yahaghi , "High-Gain Planar Lens Antennas Based on Transformation Optics and Substrate-Integrated Waveguide (SIW) Technology," Progress In Electromagnetics Research C, Vol. 68, 45-55, 2016.
doi:10.2528/PIERC16070807
http://www.jpier.org/PIERC/pier.php?paper=16070807
References

1. Pendry, J. B., D. Schuring, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493

3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

4. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Phot., Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28

5. Wang, W., L. Lin, X. Yang, J. Cui, C. Du, and X. Luo, "Design of oblate cylindrical perfect lens using coordinate transformation," Opt. Express, Vol. 16, 8094-8105, 2008.
doi:10.1364/OE.16.008094

6. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
doi:10.1103/PhysRevB.77.035122

7. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photonics Nanostruct. Fundam. Appl., Vol. 6, No. 1, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013

8. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Appl. Phys. Lett., Vol. 91, 253509, 2007.
doi:10.1063/1.2826283

9. Jiang, W. X., T. J. Cui, H. F. Ma, X. M. Yang, and Q. Cheng, "Layered high-gain lens antennas via discrete optical transformation," Appl. Phys. Lett., Vol. 83, 221906, 2008.
doi:10.1063/1.3040307

10. Luo, Y., J. Zhang, H. Chen, J. Huangfu, and L. Ran, "High-directivity antenna with small antenna aperture," Appl. Phys. Lett., Vol. 95, 193506, 2009.
doi:10.1063/1.3264085

11. Tichit, P.-H., S. N. Burokur, and A. de Lustrac, "Design and experimental demonstration of a high-directive emission with transformation optics," Phys. Rev. B, Vol. 83, No. 15, 155108, 2011.
doi:10.1103/PhysRevB.83.155108

12. Tichit, P.-H., S. N. Burokur, and A. de Lustrac, "Transformation media producing quasi-perfect isotropic emission," Optics Express, Vol. 19, No. 21, 20551-20556, 2011.
doi:10.1364/OE.19.020551

13. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3

14. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901

15. Ma, Y. G., N. Wang, and C. K. Ong, "Application of inverse, strict conformal transformation to design waveguide devices," J. Opt. Soc. Amer. A, Vol. 27, No. 5, 968-972, 2010.
doi:10.1364/JOSAA.27.000968

16. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949

17. Smith, D. R., Y. Urzhumov, N. B. Kundtz, and N. I. Landy, "Enhancing imaging systems using transformation optics," Optics Express, Vol. 18, No. 20, 21238-21251, 2010.
doi:10.1364/OE.18.021238

18. Kundtz, N. and D. R. Smith, "Extreme-angle broadband metamaterial lens," Nat. Mater., Vol. 9, No. 12, 129-132, 2010.
doi:10.1038/nmat2610

19. Mei, Z. L., J. Bai, and T. J. Cui, "Experimental verification of a broadband planar focusing antenna based on transformation optics," New J. Phys., Vol. 13, No. 6, 063028, 2011.
doi:10.1088/1367-2630/13/6/063028

20. Garcia-Meca, C., A. Martnez, and U. Leonhardt, "Engineering antenna radiation patterns via quasi-conformal mappings," Optics Express, Vol. 19, No. 24, 23743-23750, 2011.
doi:10.1364/OE.19.023743

21. Aghanejad, I., H. Abiri, and A. Yahaghi, "Design of high-gain lens antenna by gradient-index metamaterials using transformation optics," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4074-4081, 2012.
doi:10.1109/TAP.2012.2207051

22. Aghanejad, I., H. Abiri, A. Yahaghi, and R. Ramezani, "A high-gain lens antenna based on transformation optics," Loughborough Antennas and Propag. Conf., 1-4, Loughborough, UK, Nov. 2012.

23. Bozzi, M., A. Georgiadis, and K. E. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microw. Antennas Propag., Vol. 5, No. 8, 909-920, 2011.
doi:10.1049/iet-map.2010.0463

24. Yan, L., W. Hong, G. Hua, J. Chen, K. Wu, and T. J. Cui, "Simulation and experiment on SIW slot array antennas," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 9, 446-448, 2004.
doi:10.1109/LMWC.2004.832081

25. Xu, F., K. Wu, and X. Zhang, "Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 340-347, 2010.
doi:10.1109/TAP.2009.2026593

26. Cheng, Y. J., W. Hong, and K. Wu, "Design of a monopulse antenna using a dual V-type linearly tapered slot antenna (DVLTSA)," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 903-2909, 2008.

27. Awida, M. H. and A. E. Fathy, "Substrate-integrated waveguide Ku-band cavity-backed 2 × 2 microstrip patch array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 1054-1056, 2009.
doi:10.1109/LAWP.2009.2031416

28. Wang, H., D.-G. Fang, B. Zhang, and W.-Q. Che, "Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 640-647, 2010.
doi:10.1109/TAP.2009.2039298

29. Henrici, P., Applied and Computational Complex Analysis, Vol. 3, Wiley, 1986.

30., , [Online], Available: http://www.comsol.com.

31. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with graded photonic crystals in metamaterial regime," Optics Express, Vol. 18, No. 19, 20321-20333, 2010.
doi:10.1364/OE.18.020321

32. Halevi, P., A. A. Krokhin, and J. Arriaga, "Photonic crystal optics and homogenization of 2D periodic composites," Phys. Rev. Lett., Vol. 82, No. 4, 719-722, 1999.
doi:10.1103/PhysRevLett.82.719

33. Che, W., K. Deng, D.Wang, and Y. L. Chow, "Analytical equivalence between substrate-integrated waveguide and rectangular waveguide," IET Microw. Antennas Propag., Vol. 2, No. 1, 35-41, 2008.
doi:10.1049/iet-map:20060283

34., , [Online], Available: http://www.ansys.com/.

35. Marchand, E. W., Gradient Index Optics, Academic Press, New York, 1978.